

Grant Agreement No.: 101016509
Research and Innovation action
Call Topic: ICT-40-2020: Cloud Computing

Cloud for Holography and Cross Reality

D2.2: Edge and cloud infrastructure resource and computational
continuum orchestration system

Version: v1.9

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 30/04/2024

Submission date 30/04/2024

Lead editor Tarik Taleb (ICT-FI)

Authors Tarik Taleb (ICT-FI), Hao Yu (ICT-FI), Nora Taleb (ICT-FI), Tarik Zakaria
Benmerar (ICT-FI), Yan Chen (ICT-FI), Qize Guo (ICT-FI), Abderrahmane
Boudi (ICT-FI), Theodoros Theodoropoulos (HUA), Antonios Makris (HUA),
Konstantinos Tserpes (HUA), Mike McElligott (Collins), Laura Sande
(PLEXUS), Thomas Loven (PLEXUS), Yago González (PLEXUS), Peter Gray
(CS), Paolo Barone (HPE), Giovanni Giuliani (HPE), Elena Spatafora (HPE),
Alessandro Romussi (HPE), Luca Ferrucci (CNR), Massimo Coppola (CNR),
Emanuele Carlini (CNR), Patrizio Dazzi (CNR), Luís Rosa (ONE), Luis
Cordeiro (ONE), Luís Ferreira (ONE), Diogo Fevereiro (ONE), Ferran Diego
(TID), Aravindh Raman (TID).

Reviewers Philip Harris (Collins), Fermin Calvo (PLEXUS)

Work package, Task WP2

Keywords Extended Reality, Immersive Services, Orchestration, Cloud, Edge Cloud,
Cloud Continuum, Adaptive Networking, Service Migration, Artificial
Intelligence, Security and Privacy

Abstract

This report discusses the work being carried out in WP2, which is about offering a smooth and an
efficient lifecycle management of both the resources composing the platform and the services running
on top of it. In this work, an introduction to the CHARITY platform, consisting of the High Level
Orchestration and the Low Level Orchestration, is provided, along with some intelligent algorithms for
the lifecycle management of XR services such as service scheduling and service relocation. This report
also introduces a monitoring framework and a security framework for XR services. Finally, an XR
application management framework is also presented.

Ref. Ares(2024)4036757 - 05/06/2024

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 2 of 180

Document revision history

Version Date Description of change List of contributor(s)

v0.1 05/05/22 Initial version taken from D2.1x with
some editorial changes

All

v0.2 13/06/22 Updated sections with most recent
works

All

V0.3 17/06/22 Complete review and adding
Introduction and Conclusion

All

V0.4 29/06/22 Small editorial changes All

V0.5 31/08/22 Addressed Reviewers comments ICT-FI

v0.5.2 31/08/22 Overall correction ICT-FI

v0.5.3 13/09/22 Overall correction of Sections 5-6 ICT-FI

v0.5.6 20/09/22 Overall correction (yet some
comments pending)

ICT-FI

V0.6.3 27/09/22 Addressing pending comments ICT-FI

V0.6.5 29/09/22 Revisions of Sections 2.3 and 7 ONE, CNR and ICT-FI

V1.0 30/09/22 Final editing and submission EURES

V1.1 01/02/24 Initial draft of D2.2 ICT-FI

V1.2

V1.3

09/03/23

12/03/23

23/4/24

Added Sections 6-8

Updated Section 1

Revised subsection 9.2.1 and added
new subsections 9.2.2 and 9.2.3

Added content to Section 3

Added Section 7, 8

Added Section 2

ICT-FI

ICT-FI, ONE

CNR

V1.4 24/4/24 to
7/5/24

Editing and reorganizing the whole
document

ICT-FI

V1.5 8/5/24 Version sent for review and to PC ICT-FI

V1.9 22/5/24 Revised as per feedback from
reviewers and final version
submitted to GA approval

ICT-FI

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 3 of 180

Disclaimer

This report contains material which is the copyright of certain CHARITY Consortium Parties and may
not be reproduced or copied without permission.

All CHARITY Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the CHARITY Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

 CC BY-NC-ND 3.0 License – 2021-2023 CHARITY Consortium Parties

Acknowledgment

The research conducted by CHARITY receives funding from the European Commission H2020
programme under Grant Agreement No 101016509. The European Commission has no responsibility
for the content of this document.

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 4 of 180

Executive Summary

This deliverable presents key findings essential for implementing a platform designed to facilitate
seamless and efficient life-cycle management of computational and networking resources, along with
XR (Extended Reality) services hosted within the platform. These findings will inform the development
of both the platform itself and the XR services offered by providers. The resulting platform is designed
to harness and accommodate multiple network technologies and concepts, including Artificial
Intelligence (AI) techniques for orchestration and XR microservices. Additionally, the report delves into
the investigation of automation of processes for deployment and operation of advanced XR services,
which is a crucial aspect of this initiative

We introduce a cognitive resources-aware orchestration framework designed for deploying XR services
in a cloud-native environment. The orchestration framework is split into two parts, namely High Level
Orchestration and Low Level Orchestration. It illustrates the management of resources to consistently
meet the desired or defined Key Performance Indicators (KPIs) of running XR services within the
CHARITY project. A variety of algorithms are introduced with a specific emphasis on XR service
orchestration. The CHARITY framework incorporates service placement, scheduling and migration
algorithms within its service orchestration by taking into account the network's and cloud’s conditions.
The operation and management methods of resources, e.g., dynamic bandwidth and cloud resource
allocation solutions, that are necessary to meet the strict criteria of XR services are proposed. The
utilization of simulation tools and the execution of experiments on resource management in a cloud-
native environment are also demonstrated. Additionally, the framework can leverage various AI-based
algorithms to perform diverse tasks, e.g., service orchestration, cloud/network resource management.
For example, deep reinforcement learning algorithms are leveraged for the synchronized and
asynchronized deterministic network flow routing and scheduling. Furthermore, continual deep
reinforcement learning can be utilized to address the dynamic nature of multiple access in XR
applications.

The protection and privacy of location-based user data in XR services are paramount due to its sensitive
nature. Accordingly, a robust security and privacy framework is presented and discussed in this
deliverable. Within the framework, several security concerns specific to cloud-native environments,
including the essential requirement for security measures at the micro-service level and the necessity
for security in orchestration and scheduling procedures, are addressed by presenting the various
approaches and mechanisms that are being considered for incorporation within the CHARITY
framework. Additionally, it explores the DevSecOps principles as they pertain to enhancing the
pertinent security aspects of the upcoming generation of XR applications. Similar to orchestration,
automation of CHARITY's security aspects is integral and forms part of the orchestrator. In this vein,
this deliverable also explores how the security framework incorporates concepts such as Zero-Trust
and SECaaS (Security as a Service) which allows application providers and developers to transfer the
responsibility for security services to infrastructure providers.

Both the resource orchestration and security frameworks require an efficient monitoring service to
continuously oversee the platform's components and XR services. To address this need, a monitoring
and resource usage prediction platform is introduced by systematic gathering, analysis, and utilization
of information to continuously see and understand the current state of an application, service, or
infrastructure. The real-time monitoring of the environment enables the prompt detection and
mitigation of issues, such as cyber-attacks, hence minimizing response time. This platform collects
important metrics and utilizes intelligent algorithms, including prediction mechanisms, to extract
insights from the data. The insights serve as the foundation for all the intelligent orchestration
processes. The successful implementation of closed loop control and intelligent orchestration
automation relies heavily on a thorough real-time monitoring strategy and the accuracy of the
acquired metrics. The deliverable explains the monitoring framework implemented for CHARITY to
reach a dynamic multi-cluster architecture. Also, it details the data gathered, used as a data source for
forecasting algorithms and responsible for activating the custom alerting system that leverages real-
time and predicted performance information.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 5 of 180

The final aspect of this deliverable focuses on the interface between the CHARITY platform and XR
providers and developers. An application management framework is introduced, allowing XR
developers to define blueprints for their services. These blueprints are then utilized by both the high
level and low level orchestration frameworks for deployment and life-cycle management of XR
services.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 6 of 180

Table of Contents

Executive Summary ... 4

Table of Contents .. 6

List of Figures .. 8

List of Tables ... 13

Abbreviations .. 14

1 Introduction ... 17

2 High Level Orchestration .. 21

2.1 HLO – Algorithmic View .. 22

2.2 The Solver Plugins .. 24

3 Low Level Orchestration ... 34

3.1 Operator Concept ... 35

3.2 Multi Domain Cloud Orchestration .. 36

3.3 Inter Cloud Domain Connectivity ... 40

4 Monitoring & Forecasting ... 42

4.1 Goals and Research Challenges .. 42

4.2 Enablers and Tools ... 44

4.3 Monitoring Solutions .. 48

4.4 Forecasting Algorithms ... 52

4.5 Relation to CHARITY ... 68

5 XR Application Management Framework .. 69

5.1 XR Application Management Framework Architecture ... 72

5.2 XR Application Management Framework Portal.. 73

5.3 XR Service Enabler Repository ... 82

5.4 XR Service Blueprint Template Repository... 82

5.5 Backend Microservices ... 82

5.6 TOSCA Model for Blueprint Templates .. 84

5.7 TOSCA Translation .. 88

6 Algorithms for Service Orchestration .. 89

6.1 Deterministic Networking in Service Orchestration .. 89

6.2 Service Placement & Resource Scheduling .. 90

6.3 Decentralized Service Replica Management .. 92

6.4 Managing Network Slice Mobility for 6G Networks .. 93

6.5 Self-sustaining Multiple Access for Dynamic Metaverse Applications 95

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 7 of 180

6.6 Dependency-aware Microservice Deployment in Edge Computing 96

6.7 GPU-based Primitives Supporting AI-based Service Placement 98

6.8 Application Resource Management ... 99

6.9 Algorithms for Service Migration ... 104

7 Algorithms for Network Orchestration ... 112

7.1 Deterministic Traffic Scheduling in 6G-Integrated Terrestrial and Non-terrestrial
Networks ... 112

7.2 Deterministic Routing and Scheduling for Mix-Criticality Flows 114

7.3 XR-aware Dynamic Routing Strategy ... 117

7.4 Asynchronous Traffic Scheduling for Deterministic Networking 121

8 Algorithms for Cloud Orchestration .. 126

8.1 Cloud-Network Integrated Resource Allocation for Latency-Sensitive B5G 127

8.2 Joint Task and Computing Resource Allocation in Distributed Edge Computing
Systems ... 129

8.3 Simulations Tools and Experiments on Cloud Resource Management 131

9 Security & Privacy .. 136

9.1 Security of XR Applications, Zero-Trust and Security as a Service 136

9.2 Cloud Native Security Mechanisms .. 147

9.3 Security Aware Orchestration .. 162

9.4 Security in the Software XR Application... 163

9.5 Holistic Security and Privacy Framework ... 166

10 Conclusions .. 169

References .. 170

Appendix A Additional info .. 175

A.1 Tosca custom types for CHARITY .. 175

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 8 of 180

List of Figures

Figure 1: Mapping CHARITY reference architecture with High-Level and Low-Level Orchestration (D4.2).
 ... 17

Figure 2: Main workflow and functionalities of the Integrated CHARITY Orchestration solution. 19

Figure 3: New XR service deployment request steps. .. 20

Figure 4: New XR service re-deployment request steps. ... 20

Figure 5: A general form of the MILP optimization problem solved by the CSOS solver plug-in. The
groups of equations from 1 to 12 are related to different combinations of constraint type and
modelling purpose. The semantics of each group are described in the main text. 30

Figure 6: MILP solver execution time in seconds, flat vs layered execution (Sauron = main HLO); (left)
MEDIUM scenario (right) LARGE scenario. ... 33

Figure 7: The High Level Concept behind CHAIRTY´s LLO – Management Cluster and Distributed Clusters
on a Multi-Domain Infrastructure. .. 34

Figure 8: Custom Resource Definition (CRD) in the CHAIRTY´s LLO. .. 36

Figure 9: Operator’s OODA Loop. .. 36

Figure 10: Orchestration system handling the AMF Input. ... 38

Figure 11: TOSCA Model Example. .. 39

Figure 12: Parsed Input Example... 40

Figure 13: Implementation of EFK based on Kubernetes, adapted from. ... 47

Figure 14: Implementation of Prometheus and Grafana based on Kubernetes adapted from. 47

Figure 15: Prometheus architecture (Prometheus.io) ... 48

Figure 16: CHARITY monitoring architecture. ... 49

Figure 17: Monitoring framework integration with other components of CHARITY. 50

Figure 18: List of targets monitored by Prometheus. .. 50

Figure 19: Example time series returned querying Thanos about a migrated service. 52

Figure 20: Architecture of the proposed Double Tower Neural Network [15]. 53

Figure 21: Architecture of the proposed GCN-LSTM. .. 57

Figure 22: Experimental Results of the proposed GCN-LSTM (prediction accuracy). 58

Figure 23: Experimental Results of the proposed GCN-LSTM (horizontal autoscaling). 58

Figure 24: Leveraging Service Traffic Prediction for Horizontal Scaling of Network Functions [23][23].
 ... 59

Figure 25: Architecture of the proposed GCN-LSTM. .. 61

Figure 26: Experimental Results of the proposed GCN-LSTM (prediction accuracy). 61

Figure 27: Architecture of the proposed Composite Model [24]. .. 62

Figure 28: Required input preprocessing and formulation. ... 62

Figure 29: Experimental Results of the proposed Composite Model (precision). 63

Figure 30: Experimental Results of the proposed Composite Model (F1-score).................................... 63

Figure 31: Experimental Results of the proposed GNOSIS (execution time). .. 65

Figure 32: Experimental Results of the proposed GNOSIS (cost function). ... 65

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 9 of 180

Figure 33: Architecture of the proposed solution. ... 67

Figure 34: Experimental Results of the proposed solution. ... 67

Figure 35: CHARITY High Level Architecture (as initially envisioned in the description of work). 69

Figure 36: Developers’ Activities. .. 70

Figure 37: Deployment sequence. .. 71

Figure 38: AMF and network blueprints. .. 71

Figure 39: Architectural components of the XR Application Management Framework....................... 72

Figure 40: How a Micro frontend architecture enables independent end to end development

workflows. ... 73

Figure 41: Technologies allowing Micro Frontends in CHARITY. .. 74

Figure 42: Login page mediated from the openid-connect authentication provider. 74

Figure 43: Landing page for an XR Developer. .. 75

Figure 44: List of VNF images available. .. 75

Figure 45: Add new image form. ... 75

Figure 46: Main page for the “NS Blueprint Templates” functionality. .. 76

Figure 47: Summary view (“Collapsed”) of a Blueprint Template definition. 76

Figure 48: Editing of the NS general information. .. 77

Figure 49: Editing of the NS “External devices” Section. .. 77

Figure 50: Editing of the VNFs section. ... 78

Figure 51: Editing of the Virtual Links section. .. 79

Figure 52: Detail of the multi-select drop down list for specifying Virtual Link connectivity. 80

Figure 53: Blueprint Template simple topology graph. ... 80

Figure 54: XR Application Management AMP page. ... 80

Figure 55: XR Application deployment status summary. .. 81

Figure 56: XR Application deployment details... 81

Figure 57: Sample list of REST ‘GET’ operations provided by the VNF image microservice. 83

Figure 58: Endpoints of the Blueprint microservice REST API. ... 84

Figure 59: Endpoints of the XR Application microservice REST API. .. 84

Figure 60: Sample TOSCA Blueprint Template header section. .. 85

Figure 61: Sample representation of a CHARITY Component and a CHARITY Node. 86

Figure 62: Another sample representation of a CHARITY Component and a CHARITY Node............... 86

Figure 63: Representation of an external device. ... 87

Figure 64: Representation of connection points. .. 87

Figure 65: Representation of a virtual link with QoS requirements. .. 88

Figure 66: Example of display of TOSCA model. .. 88

Figure 67: Example of SFC requests in 5G edge networks [27]... 89

Figure 68: Performance evaluation of DET-SFCD and DET-SFCA algorithms [27]. 90

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 10 of 180

Figure 69: Request scheduling for optimal resource allocation at real time. 91

Figure 70: Adaptive Scheduling of Edge Tasks (ASET) workflow. .. 91

Figure 71: Percentage of successful queries over time for ML task with users arriving in real-world
pattern. .. 92

Figure 72: The motivational example of prediction based NSM scheme [32]. 94

Figure 73: The cost, revenue, and profit of the considered system versus N [32]. 94

Figure 74: The DDQL agent and evaluation network of DDQL [33] . .. 95

Figure 75: Normalized throughput, collision rate, and convergence time vs. (a) the average active time,
(b) the number of channels of UEs for CL-DDQL, DDQL, and Random. The results are the all-time average
of the values [33]. .. 96

Figure 76: Implementation of attention modified soft actor-critic (ASAC) scheme [34]. 97

Figure 77: Performance of average system cost under different number of edge servers, UEs and
comparison between the proposed ASAC and SAC [34]. ... 97

Figure 78: Performance of system reward under different number of edge servers, UEs and comparison
between the proposed ASAC and SAC [34]. ... 97

Figure 79: Application adaptation scenarios. .. 101

Figure 80: Application Orchestrator directing movement of pod from one state to another. 103

Figure 81: Application Aware Orchestration. .. 104

Figure 82: Architecture of smart triggers selection for service migration [39]. 105

Figure 83: Triggers for RL agent [39]. .. 106

Figure 84: Reward history of SMDM agents [39]. ... 106

Figure 85: Process of aggressive migration scheme [41]. ... 108

Figure 86: (a) Different acceptance ratios and (b) different link resource utilization for an experimental
instance [41]. ... 109

Figure 87: (a) Different node resources utilization and (b) different long-term profit for an experimental
instance [41]. ... 109

Figure 88: Architecture of a network aware service migration orchestrator [42]. 110

Figure 89: Performance evaluation [42]. .. 111

Figure 90: Deep reinforcement learning-based network selection and routing for deterministic
holographic services [43]. .. 112

Figure 91: Comparison of latency and jitter of sub-flows with hard delay bound between conventional
SPR and DRL-based DNSR [43]. ... 113

Figure 92: CSQF-based cycle scheduling of a DN flow [44]. .. 115

Figure 93: Branching dueling Q-networks based learning process [44]. ... 116

Figure 94: (a) Number of HRT flows scheduled; (b) Utility of SRT flows; (c) Link Usage with different
nodes in ladder topology [44]. .. 116

Figure 95: Dynamic multipath routing framework. .. 120

Figure 96: Transport network management and orchestration architecture [66]. 122

Figure 97: RL for flow allocation and time-sensitive networks optimization [67]. 122

Figure 98: ATS-based Backhaul Network (BN) performance [67]. .. 123

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 11 of 180

Figure 99: Main stages of NEPTUNO for computing the optimal configuration of the network and an
example illustrating the primary configuration parameters for two 5Qis [67]. 124

Figure 100: Performance of NEPTUNO [67]. ... 124

Figure 101: System model [68]. ... 127

Figure 102: B&B-CCRA accuracy vs. solving time (A), the accuracy of WF-CCRA, DlyMin, and Rnd vs.
network size (B) and request burstiness (C) [68]. .. 128

Figure 103: The framework of distributed task and resource allocation based on MADRL [69]. 129

Figure 104: Average system QoE over training process, and under different numbers of users, average
middle point values, and task volumes [69]. ... 130

Figure 105: Average number of GU and CU over training process, and under different numbers of users,
average middle point values, and task volumes [69]. ... 130

Figure 106: Memory consumption per POD [70]. ... 131

Figure 107: Average pod deployment time of each application [71]. .. 133

Figure 108: Stages included in deployment time [71]. ... 133

Figure 109: CPU Usage graph from 12-tier application [71]. .. 134

Figure 110: Memory Usage graph from 12-tier application [71]. ... 134

Figure 111: Mapping security and Privacy approaches to XR applications [72] 137

Figure 112: Comparison between Perimeter Security Model and Zero Trust Model, adapted from. 139

Figure 113: Data and Control planes of a Service Mesh. .. 140

Figure 114: Architecture of an autonomic and cognitive security management framework, adapted
from [87].. 142

Figure 115: Architecture of envisioned Autonomic and Cognitive Security Management framework
[87]. ... 150

Figure 116: Architecture of the framework with the enablers and tools [87] 151

Figure 117: Boosting Anomaly Detection Accuracy for XR Applications' EDoS Mitigation with AI. 152

Figure 118: Attack Detection Performances [89]. ... 154

Figure 119: Computation and storage costs of the models [89]. .. 154

Figure 120: Predictive Analysis of Video Streamer CNF Performance and detection of Hulk and Slowloris
attacks in testing data [89]. .. 155

Figure 121: A heat map visualization of forecasting errors per CNF’s metric for interpretability [89].
 ... 156

Figure 122: The visual signature of Hulk and Slowloris attacks using the forecast errors heat map [89].
 ... 156

Figure 123: The architecture of deploying SEaaS in Kubernetes for securing XR applications [90]. ... 157

Figure 124: Mapping open-source enablers for network security in CHARITY architecture. 158

Figure 125: Network anomaly detection and mitigation functions mapped into OODA loop and closed-
loop pattern. ... 159

Figure 126: Reference architecture of the proposed framework. .. 160

Figure 127: Experimental Use Case scenario. ... 161

Figure 128: Evolution of TCP connections registered in the message broker. 162

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 12 of 180

Figure 129: Vulnerability scan example. ... 164

Figure 130: Vulnerability description at Nist site. ... 165

Figure 131: UC Integration Scenario. .. 167

Figure 132: HSPF Agent Injector – HSPF Agent and Collector injection into UC microservices. 167

Figure 133: HSPF Agent and Classifier Initial Behaviour. .. 168

Figure 134: HSPF Classifier Anomaly Detection. ... 168

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 13 of 180

List of Tables

Table 1: Application and Resource parameters for the evaluation. .. 32

Table 2: Number of MILP variables and constraints in the LARGE scenario, flat vs layered orchestration.
 ... 33

Table 3: Overview of monitoring requirements. ... 43

Table 4: Comparison between monitoring tools. .. 46

Table 5: Prometheus metrics used in CHARITY. ... 50

Table 6: Experimental results of the proposed Intelligent Autoscaling method [15]. 55

Table 7: Experimental results of the proposed IPFT. ... 56

Table 8: Request number [23]. .. 60

Table 9: Transmitted data [23].. 60

Table 10: Session duration [23]. .. 60

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 14 of 180

Abbreviations

5G-PPP 5G Infrastructure Public Private Partnership

AAA Authentication, Authorization, Accounting

ACO Ant Colony Optimization

ACNT Abstraction and Control of Transport Networks

AE Analytical Engine

AI Artificial Intelligence

AICO Analytics Intelligence Control and Orchestration

AIRO Artificial Intelligence based Resource aware Orchestration

AMF Application Management Framework

AMP Application Management Portal

ANN Artificial Neural Network

AR Augmented Reality

ARMA AutoRegressive Moving Average

ARIMA AutoRegressive Integrated Moving Average

ASET Adaptive Scheduling of Edge Tasks

ATS Asynchronous Traffic Shaper

BN Backhaul Network

CC Central Cloud

CCROM CHARITY Compute Resource Orchestrator Module

CD Continuous Delivery

CI Continuous Integration

CIS Center for Internet Security

CNF Containerized Network Function / Cloud-native Network Function

CNROM CHARITY Network Resource Orchestrator Module

CP Constraint Programming

CSP Cloud Service Provider

DAST Dynamic Application Security Testing

DCAE Data Collection, Analytics and Events

DDPG Deep Deterministic Policy Gradient

DE Decision Engine

Det-SFCA Det-SFC Adjustment

Det-SFCD Det-SFC Deployment

DFS Depth First Search

DL Deep Learning

DRL Deep Reinforcement Learning

ECMP Equal-Cost MultiPath

EFK ElasticSearch, Fluentd and Kibana

EM Edge Minicloud

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 15 of 180

FG Forwarding Graph

FL Federated Learning

GA Genetic Algorithm

GRU Gated Recurrent Unit

GUI Graphical UI

IPFT Intelligent Proactive Fault Tolerance

ISP Internet Service Provider

LFA Link Flooding Attack

LE Learning and Exploration

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MANO MANagement and Orchestration

MEAO Mobile Edge Application Orchestrator

MEC Multi-access Edge Computing

MEP Mobile Edge Platform

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming model

ML Machine Learning

MRMOGAP Multi-Objective Generalized Assignment Problem

MS Monitoring System

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NN Neural Network

NS Network Services

NSD Network Service Descriptor

ONAP Open Network Automation Platform

OPA Open Policy Agent

OSM Open-Source MANO

OSPF Open Shortest Path First

PNDA Platform for Network Data Analytics

POLP Principle Of Least Privilege

QoE Quality of Experience

QoS Quality of Service

RFT Reactive Fault Tolerance

RL Reinforcement Learning

RM Request Manager

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 16 of 180

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROIA Real-Time Interactive Applications

SAIRMA Seasonal ARIMA

SAP Service Allocation Plan

SAST Static Application Security Testing

SECaaS Security as a Service

SDN Software Defined Networking

SFC Service Function Chain

SMDM Slice Mobility Decision Maker

TOSCA Topology and Orchestration Specification for Cloud Applications

TSN Time Sensitive Networking

UBS Urgency-Based Shaper

UC Use Case

UI User Interface

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFM VNF Manager

VNF-FG VNF-Forwarding Graph

VR Virtual Reality

XR eXtended Reality

XRSBTR XR Service Blueprint Template Repository

XRSE XR Service Enabler

ZSM Zero-touch network and Service Management

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 17 of 180

1 Introduction

Having defined the architecture of the CHARITY platform in D1.3, we still need to actually define and
devise the algorithms and mechanisms that shall run within the components of the architecture.
Effectively, in the first phase of the project, the general architecture of the platform was introduced,
including all the necessary components of the orchestration framework. Intuitively, these components
consist of several algorithms that would bring the necessary intelligence to the envisioned platform.
Such algorithms would perform actions such as Virtual Network Function (VNF) placement, cloud and
network resource scheduling, service migration, path computation, etc.

This document represents the last version of the deliverable, based on the initial version D2.1, that
introduces the orchestration framework of the CHARITY platform. It introduces and summarizes all the
activities that took place in the ambit of WP2. Following the guidelines of the CHARITY architecture,
this deliverable is meant to devise, implement, and experimentally evaluate some of the algorithms
and the building blocks of the architecture.

Figure 1: Mapping CHARITY reference architecture with High-Level and Low-Level Orchestration (D4.2).

This deliverable is structured as follows. Hereunder, explanation will be provided on the evolution path
that has been taken by the CHARITY architecture. In Section 2, the high-level orchestration (HLO)
framework is introduced, along with the interplay that happens between the XR service and the
orchestration framework. Section 2, together with Sections 6-8, also introduce some smart closed
loops algorithms that composes the CHARITY orchestration framework. The low-level orchestration
(LLO) framework, which intends to provide the means for proper resource instantiation and actual
deployment in multi-domain infrastructures, is provided in Section 3, along with the enabling
technologies and tools. LLO is responsible for infrastructure provisioning, networking, and application
deployments. Monitoring and resource usage prediction define the focus of Section 4. Therein, the
monitoring architecture is presented along with the tools that would be used for its implementation.
Relevant networking and computation prediction mechanisms are also introduced. These are used for
forecasting purposes that can be leveraged by the high-level orchestration framework to take pro-
active decisions, as explained in Section 2. In Section 5, the application management framework is

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 18 of 180

presented. It defines the main entry point for XR developers to CHARITY platform. Sections 6
introduces several algorithms to be incorporated into HLO, as discussed in Section 2, with focus on
service orchestration. These algorithms also include several service migration algorithms that can be
used in the CHARITY framework. One part is about the triggers of service migrations and the other part
is about optimizing the actual service migration process while considering the status of the network.
Section 7 details networking elements of the CHARITY architecture. It introduces algorithms for
dynamic routing and deterministic networking solutions that may be needed to support and meet the
stringent requirements of XR services. Section 8 shows some implemented simulation tools and
present and discuss some conducted experiments on resource management in a cloud infrastructure.
Section 9 is mainly targeted toward security & privacy aspects of the CHARITY framework. It details
how XR are to be secured. It further proposes an architecture to ensure security and privacy. Finally,
in Section 10, concluding remarks are drawn.

It shall be highlighted that the structure of this document D2.2 differs from the original structure of
D2.1, and that is in order to align with the evolved CHARITY architecture. Indeed, as already mentioned
in D4.2, the CHARITY architecture has experienced a transition from the initial CHARITY architecture
to the ongoing development of an integrated orchestration solution. This evolutionary phase in system
design aims to capitalize on the existing architecture's strengths while incorporating current
component developments. The goal is to create a more streamlined, efficient, and robust system
without altering the fundamental principles of the CHARITY architecture. The mapping outlined in
Figure 1 categorizes the original blocks into core components responsible for orchestrating XR services
and the underlying infrastructure within the context of the CHARITY consolidated solution.

 Figure 1 illustrates this mapping, comprising six distinct groups:

• High-Level Orchestration: Intelligent closed loops responsible for resource allocation and
component migration decisions (i.e., detailed in Section 2, Sections 6-8).

• Low-Level Orchestration: Building blocks and components for provisioning and orchestrating a
multi-domain infrastructure and XR services within each cluster (i.e., detailed in Section 3).

• Monitoring & Resource Indexing: Components related to monitoring and resource indexing for
extracting and exposing metrics related to services and underlying infrastructure (i.e., detailed in
Section 4).

• AMF (Application Management Framework): Front-end components for XR developers to visually
compose services and trigger their provisioning into the CHARITY platform (i.e., detailed in
Section 5).

• XR Device/Service-Specific Functions: Components providing XR-specific mechanisms, such as
Mesh Merger (i.e., detailed in D3.2).

• Integration Fabric: The messaging and integration layer for inter-component communications.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 19 of 180

Figure 2: Main workflow and functionalities of the Integrated CHARITY Orchestration solution.

Moving to Figure 2, the main workflow and functionalities of the CHARITY integrated solution during
XR application deployment are depicted. Five core features are highlighted:

• Monitoring of infrastructure, cluster, and application metrics.

• Selection of the best location for service deployment.

• Dynamic provisioning of new clusters.

• Actual deployment of services on the selected clusters.

• Reconfiguration of monitoring-related settings.

The AMF serves as the front end for immersive application developers, facilitating the creation and
deployment of interactive services. Developers define application modules visually, and the AMF
generates a TOSCA representation, triggering a new deployment. The orchestrator then intelligently
decides where to deploy services based on real-time metrics and existing or newly created clusters.

Figure 3 and Figure 4 delve into the steps involved in XR application deployment and re-deployment,
respectively. The first orchestration stage analyses XR blueprint definitions, assesses resource
infrastructure status, and forms a deployment plan. Two scenarios may arise: either required resources
are available, or they need provisioning. The Low-level orchestrator translates decisions into
deployments, including provisioning new clusters and forming connections between them. In re-
deployment scenarios, AI-driven closed loops and predictive analysis determine when migration
should occur, predicting metric threshold exceedance and triggering alerts for the orchestrator.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 20 of 180

Figure 3: New XR service deployment request steps.

Figure 4: New XR service re-deployment request steps.

Includes
Infrastructure

metrics &
thresholds

Orchestrator

Analyze TOSCA XR blueprint
• Compute resources
• Identify constraints
• Infrastructure requirements

Retrieve current resources status
• system monitoring

info/forecast

Run a Solver plugin to find best
available infrastructure resources

Resources
found ?

Generate New XR Service
Deployment Manifests

Retrieve available providers status
• System monitoring info/forecast
• Static provider configuration

Select good Provider for new cluster

YES NO

Optimize business
aspects (costs) for

new resources

Optimize the
allocation using

available
infrastructure

resources

High Level

Orchestrator

(Resource

Planning)

Low Level

Orchestrator

BP
(Tosca) Orchestrator

Deploy cluster
with CAPI & LIQO

Notify Monitoring Manager

HighOrchestrator

Analyze TOSCA XR blueprint
• Compute resources
• Identify constraints
• Infrastructure requirements

Retrieve current resources status
• system monitoring

info/forecast

Run a Solver plugin to find best
available infrastructure resources

Resources
found ?

Retrieve available providers status
• system monitoring info/forecast
• Static provider configuration

Select good Provider for new cluster

YES

NO

High Level

Orchestrator

Low Level

Orchestrator

Orchestrator

Deploy cluster
with CAPI & LIQO

Notify Monitoring Manager

Monitoring
Agent

Forecasting

Metric is now crossing
threshold

Alarm à Orchestrator

Metric will soon cross
threshold

Alert à Orchestrator

Generate XR Service
Re-Deployment Manifests

+ Migration strategy
TOSCA2yaml translation Manifest Deployment

XR
Service

MONITORING

PREDICTION

ADAPTATION

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 21 of 180

2 High Level Orchestration

This section is about the design and implementation of the High-Level Orchestrator module (HLO)
which performs the high-level phase of resource allocation in the CHARITY platform. The HLO is a core
component of the platform, interacting directly or indirectly with basically all the platform
components. Hence, this section also provides a first peek into the overall orchestration solution as
developed by the project. As we dwell in the design and features of the HLO, we will often be
summarizing the role of various platform services, further detailed in the following sections of this
deliverable, to clarify their respective interactions with the HLO.

The HLO is the component that takes decisions on the most suitable deployment topology for a specific
XR application deployment request, considering

• the application requirements, in terms of the expected quality of services and quality of
experience,

• and the resources available in the CHARITY deployment targets.

Besides being it a universal requirement for Continuum Computing platforms, dynamic resource
management was included since the very first design of the platform, because CHARITY specifically
manages XR applications with strict QoS. Dynamic orchestration enables the provisioning of a near-
real-time, seamless experience to the application users. Dynamic orchestration also requires
additional, continuously updated information about

• application component behaviour (the application components may change their resource
usage for any business or operative reason, including the action and real-world locations of
the collectivity of its users),

• deployed resource behaviour (as resource churn, overloading and interference can affect all
aspects of orchestration: computation, networking, and storage), and

• availability and features of resources that are potentially needed for subsequent deployment
actions.

We only briefly recall here that the archetypical methodology allowing dynamic management is that
of the closed control loop, where the HLO loop beside the resources includes the LLO, the Monitoring,
the Forecast, and the AMF user interface. Such a control loop is depicted in Figure 3 (Service
Deployment) and Figure 4 (Service Adaptation), that are discussed in the following sections.

Over the course of the CHARITY project, and as explained earlier, the CHARITY architecture presented
in D1.3 and D2.1 has evolved into the combination of a High-Level Orchestrator and a Low-Level
Orchestrator (LLO, see Section 3). The combination of these two components allows to better separate
the aspect of abstract resource allocation and management from the aspect of performing the
concrete activities that deploy applications and steer the resource allocation on the real-world
platform.

• The HLO is triggered by AMF for deployment requests arriving either from the XR developer or
the external AMF REST API. This HLO interface is the main entry point for all orchestration
decisions, and the HLO ultimately relies then on the LLO to enact high-level decisions on the
target domains (e.g., new cluster allocation, deployment of XR application manifests).

• The HLO focuses on the problem of combined optimization of computational, networking and
storage resources. As previously reported in D2.1, the whole allocation problem is cast as a
Multi-Resource Multi-Objective Generalized Assignment Problem (MRMOGAP), which can be
tackled with a variety of techniques sporting different trade-offs among algorithmic
complexity, execution time, and solution quality.

• The HLO can support different techniques to solve the MRMOGAP problem by leveraging (1)
the high-level application description based on TOSCA Blueprints, and (2) resource information
that is parsed and transformed into the data structures needed by the specific method. The

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 22 of 180

LLO, by comparison, focuses more on interaction with the Cloud resources, connecting
resources across multiple clusters and datacenters, and reacting directly to local effects.

• The layered HLO/LLO structure allows the HLO to remain more flexible in its implementation,
leaving the burden of interacting with Cloud interfaces (e.g. ClusterAPI) to the LLO module (see
Section 3).

• A set of alerts and warnings is propagated from the platform and the apps to the HLO, allowing
the HLO to gather information about QoS violation, as well as forecasts of violations
concerning a multiplicity of events, that range from flat resource unavailability to runtime
behaviour variations. The set of events also optionally includes customized, application-
defined metrics and application-mandated deployment reactions. The HLO employs the
Monitoring Manager as the primary interface to all monitored metrics. The design and features
of the monitoring system are described later, in Section 4.

• AI-informed decisions for self-* management are achieved by leveraging the CHARITY forecast
service, employing various RNN and DNN techniques to foresee QoS incidents, as well as by
developing AI-based plugins for the HLO. The AI hints at future behaviour are essential and
have their own semantics, but in order to streamline the HLO design, the forecasting Manager
is invoked through the Monitoring Manager, reusing the same interface and compatible
abstractions for all kind of platform-initiated warning and alerts. This removes the need to
develop within the HLO separate control loops for different types of events and warnings,
allowing to employ common general abstractions and orchestration/adaptation techniques
for the high level of orchestration. The set of AI techniques that are employed to forecast QoS
violations, resource issues and application issues are further described in Sections 6-8.

2.1 HLO – Algorithmic View

So far, we summarized the overall interactions of the HLO with other components of the CHARITY
platform. We now describe the HLO from the algorithmic viewpoint, detailing the different paths the
HLO can follow in performing the orchestration process to fulfil all the CHARITY-mandated features of
adaptivity, efficiency and intelligent resource management. The input sources for the CHARITY
orchestrator include:

– The TOSCA Blueprint (BP) from the AMF describing the application structure according to the
TOSCA format (Section 5).

– All types of resource information from the Monitoring System (i.e., resource availability and

capabilities over the known virtual clusters – see Section 4).

– Alerts and warnings from the Monitoring system (i.e., these are asynchronous events that are
relayed to the HLO by remapping the information onto the REST API – see Section 4).

The main Output expected from the CHARITY HLO consists of

– Deployment plans for the LLO in the form of augmented application BluePrints, where the
deployment domains for each application module or subsets are specified via specific TOSCA
fields.

Additionally, the HLO process can result in the allocation of new virtual clusters from known
datacenters as a side effect, whenever the need for more resources is detected during the
orchestration algorithm. We show in Figure 3 (Service Deployment) the Initial Deployment phase of
the overall orchestration process involving both the HLO and the LLO, as well as some of the
interactions with other platform components.

The overall architecture of the CHARITY orchestration support, planned in deliverable D2.1, was
targeting the AIRO (AI Resource-aware Orchestrator) as a composition of orchestration modules
devoted to different orchestration aspects (computation resources and network resource) whose

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 23 of 180

cooperation results in the ability to orchestrate services with the specific QoS required by the XR/AR
reference applications of CHARITY. The initial design of these orchestration modules would also
account for the option of having them decomposed hierarchically in order to better manage large and
heterogeneous platforms. This initial architecture has evolved into a hierarchical decomposition of the
orchestrator in two layers,

• a High-Level Orchestrator, which is actually a common module dealing with the orchestration
problem as a whole, including all requirements and constraints related to any resource and
application component but performing only abstract management. A more abstract viewpoint
to the orchestration is chosen for the HLO, which reduces the dependencies from the low-
level details of software deployment, allowing to focus on essential parameters of the
deployment and the correlation between different resources. The higher abstraction level
(e.g., ignoring low level details, grouping all resources in a cluster for the sake of problem-
solving) makes amenable a mathematical formulation of the problem that can be either
directly optimized, providing “best” solutions to each orchestration request, or approximated
using different techniques to achieve a desired trade-off between optimality of the
orchestration action and the complexity and cost of finding out the action.

• a Low-Level Orchestrator, performing concrete resource management, which is the topic of
Section 3. To deploy applications, it directly interacts with the cluster resources via ClusterAPI
and sets up the networking via LIQO, thus preserving the rough subdivision into specialized
orchestration modules for different aspects. The LLO can also perform its own dedicated
optimization, as documented in Section 3.

The abstract management performed by the HLO, focusing on high-level optimization, also allows for
greater flexibility and reduced code complexity. One way the flexibility is used is in defining a plug-in
interface for exploiting different orchestration policies as interchangeable modules, allowing for easier
experimenting activities, and debugging activities. This is described in section 2.2, as well as in Sections
6-8, each addressing an optimization objective (i.e., a specific closed loop with a specific algorithm to
achieve a specific optimization).

The improved flexibility is also exploited to more easily accomplish the second key task that AIRO was
expected to tackle, that is, dealing with dynamic orchestration. Reacting to all kind of changes
happening in the resources, in the application, and in the whole Continuum platform is based on
sensing different events and alerts via the Monitoring system, as previously mentioned. This flux of
events plus the ordinary submission of new applications from the users/XR developers create a stream
of Orchestration requests and Adaptation (i.e., re-orchestration) requests.

We deal with this stream of requests by applying a control loop structure that receives two types of
inputs (i.e. events alerts and submission requests) and has a main way of reacting to that, and a second
loop to deal with the special case that additional resources need to be located to complete the
orchestration. This leads to two main ways of working of the HLO, and two execution variants for each
use case.

The two use cases, taken together, implement the control loop dynamically steering application
orchestration in CHARITY.

• Deployment (or Initial Orchestration) – The Initial Orchestration is triggered by the user when
application deployment is first required, with the user itself providing via the AMF all the
information about the structure and requirements of the application and all its services,
encoded in the application blueprint. The initial orchestration implements the beginning part
of the control loop managing each application, when resource selection takes place according
to application requirements, to resource availability and constraints, developing a high-level
deployment plan for a newly launched app. Initial orchestration is depicted in Figure 3 (Service
Deployment).

• Adaptation (or re-orchestration) – The adaptation use case implements the need to revise the
initial deployment as a reaction to a change in the environment (e.g., the app, the platform

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 24 of 180

resources) that is disrupting, or may soon disrupt, the stipulated QoS for some part of the
application. The adaptation process is promoted by the monitoring system providing the HLO
with a flow of detected metrics from the application, its components, and the resources, as
well as foreseen values for some of these metrics predicting future QoS issues. We thus see
that the Monitoring System closes the control loop toward the HLO, and the Adaptation use
case in the HLO is nothing else than the implementation of the control steering for any
application that was already deployed. The Adaptation part of the Orchestration process is
depicted in Figure 4 (Service Adaptation).

The Two variants of the execution are common to both use cases, and deal with the two possible meta-
outcomes of attempting a high-level deployment plan

• Feasibility – enough resources are already available to generate a high-level plan. This default
flow of actions leads directly to providing the LLO with the high-level plan for further action.

• Unfeasibility – the optimization phase of the high-level plan detects that this application
deployment requires unavailable (amounts of) resources to succeed. In this execution variant,
an inner loop of the orchestration process accounts for the need to locate additional resources,
before attempting to satisfy the deploy request again. The loop seeking for additional
resources can possibly retry several times the two meta-steps of high-level resource allocation
(asking for new virtual clusters to be deployed) and attempting a high-level allocation.

Both execution variants (i.e., the straightforward and the inner resource location loop) are obviously
present in both the Initial Deployment and in the Adaptation Orchestration cases.

2.2 The Solver Plugins

As already outlined in D2.1 and further expanded in Sections 6-8, there are several different
approaches to solving the optimization problem underlying the (re)deployment of complex
applications on Continuum platforms. These approaches can be generally organized in three
categories:

• Algorithms for the service orchestration (Section 6)

• Algorithms for the network resource orchestration (Section 7)

• Algorithms for the cloud resource orchestration (Section 8)

Hereunder, we focus on a solver plugin interface that the CHARITY’s HLO has been extended with. It
can be configured to use different algorithms to solve the placement problem of the XR Application
resources. This choice does not introduce changes either in the external interfaces of the HLO, as
described in D4.5 section 2, or in the format of the data provided and returned by the HLO. Application
requirements are described inside the TOSCA topology model.

The Solver Plug-in API allows asking for an optimal solution for the placement of application
components into Kubernetes Pods on the CHARITY runtime resources available, providing a REST API
with a POST method. All solver plugins are assumed to be stateless, so the HLO embeds all the needed
information in the plugin call, namely

• the Tosca model for the XR Application coming from the AMF layer, where parameters of the
application Blueprint have been instantiated by the AMF

• in case of a redeployment due to an application adaptation, the already deployed TOSCA
blueprint is also included, as it has been augmented by the deployment process of the LLO to
hold information about the current deployment status of the application, e.g., cluster,
computing resources, IP addresses and existing virtual networks. When devising an update,
the current deployment details

o allow to avoid unnecessary application pod redeployment,

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 25 of 180

o provide the essential information to allow newly deployed pods to join the existing
application,

o can help reduce the size of the optimization problem

• all static and dynamic information about the available datacenters and the clusters that are
available for deployment, including their features and properties like e.g., the number and
characteristics of their nodes (cores, memory, storage)

Based on this input, the solver returns a response which is again a TOSCA application description,
further augmented with extra fields holding information needed by the LLO to enact deployment
targets for compute and storage, as well as deployment of inter-cluster network resources by
configuring peer connections between clusters. When not enough resources are available to allow the
deployment, the solver plugin must identify the need for new clusters and provide the information
needed for setting up new virtual clusters, e.g., type of resources and size of the cluster.

The basic need for a Solver plugin is to allow experimenting and mixing different optimization
techniques on the CHARITY platform. Several optimization techniques were identified in D2.1. Among
those the project developed two different “solvers”:

– A complex scenario and large topology solver using an algorithm with significant complexity,
capable of determining the “global best” solution, but requiring significant computing
resources, hence sporting a non-negligible computation time to generate a deployment
solution

– A simpler, fast algorithm using heuristics suitable for small scenarios and topologies. The
simple solver can find a “local best” solution (a “good enough” one with no guarantees of
optimality) with linear complexity and using minimal computing resources

We shall note that these two solutions can be seen as the two extremes of a range of techniques
sporting different complexity and features. The MILP based complex scenario solver aims at finding
optimal deployment for each request, at the cost of algorithmic “heavy lifting” and limited scalability.
Less accurate, heuristic-based solutions or NN-based ones sit in the middle, as they can find
comparatively good solutions in less time. While approximated methods do not guarantee the solution
to be optimal, they can be preferred as they are typically more scalable and allow to save on time and
resources spent to find mathematical optima. Finally, the greedy approach of the Simpler solver with
its basic heuristics requires the least amount of resources and time to generate a feasible solution and
let the deployment progress.

2.2.1 Simple Scenario Solver

The solver plug-in for the simple scenario (SSS) was already outlined in D4.5. This plugin is based on a
simple heuristic algorithm that aims at quickly finding a solution using existing, available resources
with no claim of optimality in the resource usage, sporting on the other hand low code complexity and
requiring a limited amount of computation and memory resources to produce a deploy solution. The
simple scenario solver is ideal when resources are not tight or costly and can simplify orchestration
debugging, as it produces easily verifiable and usually highly repeatable solutions.

As all solver plugins, the SSS parses the input TOSCA model, extracting the relevant metadata of the
CHARITYNode elements to be deployed, as well as the current and forecasted resource status and
availability for the known datacenters and clusters.

A linear scan on all CHARITYNode and domains (datacenters) filters out the domains with not enough
resources for each CHARITYNode, considering all resource aspects (e.g., CPU, memory, storage, GPUs).
Compliant domains are then scored based (i) on network proximity to the connected geolocated
ExternalSystem that the application need to interact with (priority is given to EDGE nodes and CLUSTER
nodes with links to EDGE nodes) as well as (ii) on the availability of computing resources. Finally, the
feasible domains are overall ranked.

Once the best domain (i.e., the datacenter with the highest score) has been selected for the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 26 of 180

CHARITYNode, the existing clusters are examined to check their degree of “occupancy” (current and
forecasted).

– If a “good” cluster is found – that is, the best one in the selected datacenter – the Node will be
allocated in that cluster. To implement the choice, the CHARITYNode attributes inside the
TOSCA model will be updated with the selected datacenter and cluster.

– If on the other hand no good cluster is found, this means that we are in the case when no free
clusters are available, but the datacenter still has enough free resources. The CHARITYNode
must be assigned to a new cluster, one that will be allocated prior to the deployment. We are
now in the case variant where action is needed to gather more resources before the APP
deployment can progress in the HLO. The name and size attributes of the new cluster to be
created are then added to the list of clusters to be created returned by the solver to HLO,
together with the updated TOSCA model.

To keep the placement algorithm complexity as low as possible, this simple solver plugin implements
a redeployment request simply as a new independent request without considering the current state.
While this guarantees that a new allocation can be found with minimal search overhead, this design
choice does not attempt at minimizing the potential components migration costs.

2.2.2 Complex Scenario Optimal Solver (CSOS)

As previously reported in D4.5, the solver module targeting the complex scenario develops from the
work done during the project in studying the Multi-Resource Multi-Objective Generalized Assignment
Problem (MRMOGAP) that results from the matching of application structure, constraints, and
parameters specified in the TOSCA blueprint, with the available computational resources belonging to
the CHARITY federation. For the sake of completeness and readability this section and its subsections
rework and integrate material from previous version of the deliverable with new results and
information that was partly covered in deliverables from other WPs (deliverables D4.2 section 5.2.1,
and D4.5 section 2.6). We instead leave out implementation details like the detailed REST API
descriptions and the interaction diagrams that were presented there.

The MRMOGAP problem, besides being algorithmically hard, is also made more complex by the
dynamicity of the Continuum environment, as platform resources status, application and user needs
are dynamically changing over time. The characteristics and status of the resources, as well as those
of the already deployed application nodes, are continuously monitored in CHARITY. Data gathered via
the monitoring support contributes to the definition of each instance of the MRMOGAP problem
(turned into coefficients for the optimization problem) and leads to dynamically changing solutions
also in the “simple” case of repeating the application deployment for a given application.

Additionally, the Complex scenario Solver (CSOS) addresses the case variant when an application needs
either total or partial redeployment, as a reaction to one of the different alerts that the platform can
generate to signal verified QoS constraint violation, foreseen violations from the forecast module, or
explicit scale-up/down of resources linked to application parameter changes.

The main steps of the CSOS plugin, which are partly common with those of the SSS plugin, are the
following ones.

1. The plugin parses the TOSCA blueprint of the application to be (re)deployed, gathering all
information about the desired structure and all related aspects of QoS (e.g., compute,
networking, storage)

2. The plugin parses, if it is present, the TOSCA blueprint of the currently deployed application
(previous blueprint). If a previous blueprint TOSCA is present in input, we are in the
Redeployment process, as depicted in Figure 4 (Service Adaptation). The previous blueprint is
needed as solver plugins are stateless, hence we need to gather information about the
previous deployment. The current blueprint is exploited to understand

o what modules of the application are critical, or are soon foreseen to be, in terms of

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 27 of 180

QoS, due to changing application load or resource availability. These parts of the
application will need reoptimization.

o what modules of the application are not critical and can stay deployed as they are, and
also how they are currently deployed in the first place.

3. The information about previous deployment non only provides the option to avoid redeploying
the whole application because of a local change, but it also helps reducing the size of the
optimization problem for the redeployment case, thus reducing the service time and workload
of the CSOS module.

4. Information about the available resources in the platform is gathered and parsed like it is in
the SSS plugin.

5. MRMOGAP problem generation. The plugin translates all the gathered information into a
mathematical formulation of the MRMOGAP problem. In the CSOS plugin developed for
CHARITY, we chose to exploit a Mixed-Integer Linear Programming (MILP) optimization
technique, so the deployment solution is obtained by the solution of a specially crafted MILP
problem. The design of the MILP problem generation and details on the approach to solving it
are reported in subsection 2.2.2.1.

6. The plugin solves the MILP problem (see subsection 2.2.2.1).

7. The output of the optimization can lead to two possible cases (the two use-case variants).

o The optimization problem is solvable, so a suitable allocation is found, and it is optimal
with respect to the optimization criteria encoded in the MILP formulation:

a. the MILP problem solution is translated into allocation parameters that are
filled in the TOSCA blueprint by the main orchestrator module, specifying the
domains and clusters for each CHARITYNode element like the SSS plugin does.

b. The augmented blueprint is then returned to the main HLO module for the
deployment process to proceed.

c. As final step of the HLO to solver plugin interaction, the augmented blueprint
is provided to the LLO, which will specify further details about the actual
deployment and pass them back as TOSCA output variables to the main HLO
module. Besides that, the augmented version of the blueprint is also cached
within the HLO. It will be provided again to the CSOS plugin as app adaptation
is triggered, to recover the current app deployment state and support dynamic
reallocation and deployment.

o The optimization problem is unsolvable. Then, no suitable allocation can be found with
the available resources. In this case the additional resources needed to allow a
successful deployment are inferred from the modelled MILP problem. The amount and
type of additional resources required is returned to the main HLO module, which
proceeds to recruit new resources e.g., by allocating new virtual clusters from an
available datacenter or from a public cloud provider. This case variant is the same as
the corresponding one of the SSS plugin, except for how the additional list of required
resources is generated.

Finally, the output of the CSOS plug-in back to the main HLO is either

• a deployment allocation, whose details and topology are returned to the main orchestrator so
that the deployment can proceed by interacting with the LLO, or

• the specification of a suitable set of additional resources to look for, since there is no feasible
deploy plan with current resources.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 28 of 180

2.2.2.1 The MRMOGAP problem as a Mixed Integer Linear Programming problem

The CSOS solver plugin approaches the MRMOGAP problem by encoding it as an instance of a Mixed Integer
Linear Programming (MILP) problem. The optimization problem of deploying a set of components of a
given microservice-based application onto the available resources of a set of datacenter / edge clusters
is thus encoded as a MILP instance.

Linear Programming optimization (LP) tackles the problem of optimizing a linear function of a vector
𝑥 ∈ ℝ𝑛 while obeying a set of linear constraints of the form 𝑎 ∙ 𝑥 ≤ 𝑏 .

MILP optimization is a variant of Linear Programming that requires a proper subset of the elements of
the vector x to be restricted to integer values. While LP has exponential worst-case complexity but on
average it requires a polynomial number of steps, MILP optimization is an NP-hard problem and can
be efficiently solved only if we can guarantee specific preconditions on the matrix of coefficients, if we
can apply search heuristics and search pruning algorithms. On the other hand, MILP provides the
flexibility needed to encode a plethora of real-word optimization problems, and MRMOGAP problems
specifically, so a many decades long research and development effort form the Operation Research
community has been poured into crafting efficient techniques as well as proprietary and open-source
tools to generate and solve MILP problems.

We translate the MRMOGAP problem into MILP by generating equations, (auxiliary) variables, and
coefficients that encode all the constraints in the MRMOGAP, as well as defining the cost function
based on the cost objectives of the orchestrator. These can be e.g., performance metrics, power
metrics, economic costs, and in the general case a linear combination of those aspect-specific metrics
that result in multicriteria optimization.

As reported in previous deliverables, the implementation of the CSOS plug-in relies on the Python-MIP
library2 version 5, for generating the actual MILP instance and interact with the solver library. Main
and auxiliary variables of the instance are generated to encode the different allocation options,
problem coefficients and equations for constraints are directly derived from the QoS constraints in the
blueprint as well as built to ensure consistency of the MILP model with the original problem 3.

The MILP instance is then solved with the COIN-OR Branch-&-Cut CBC solver4, a standard, open-source
C-based optimization library. This choice allows CHARITY’s HLO and its orchestration process to exploit
the considerable expertise and the years of theoretical and technological contributions provided by
the field of Operating Research and accumulated the tool. Countless optimization algorithms and
heuristics are encoded in a flexible and robust software artifact that is developed and maintained over
the years. The CSOS solver plug-in executes a Branch-&-Cut (BC) algorithm that provides the exact
optimal solution in a finite time. The dev-supported integration of Python-MIP and the COIN-OR solver
ensure that the solver plug-in exploiting them can be easily packaged and distributed as a docker
container with standard REST interfaces with TOSCA and JSON encoded parameters, ensuring
architectural modularity as well as easing the integration with the main HLO.

Going back to the topic of how the problem is modelled, for the sake of clarity we must underline that
in the following we will need to distinguish between graph edges, that are mathematical abstractions,
and Edge resources, that represent actual Edge computing systems (either to be located or known,
available ones).

In our model an application A is represented by an undirected graph GA =< C, E >

• C represents a set of N vertexes and E represents the set of M edges connecting the vertexes.

2 https://www.python-mip.com

3 See “SMARTORC: Smart Orchestration of Resources in the Compute Continuum”, E. Carlini et al, Frontiers in High
Performance Computing, Volume 1 – 2023. DOI: 10.3389/fhpcp.2023.1164915

4 https://github.com/coin-or/Cbc

https://www.python-mip.com/
https://github.com/coin-or/Cbc

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 29 of 180

Each vertex ci ∈ C with i ∈ {1, … , N} embodies a single component of the application, according
to the microservice paradigm. Different applications can be deployed on distinct clusters,
depending on each application’s QoS requirements.

• E is a set of graph edges. Each edge ei,j ∈ E represents an undirected communication path
connecting application components vi and vj, with i, j ∈ {1, … , N} : i ≠ j.

Every vertex in C (an application component) and every edge in E (a communication link) can be labelled
with a set of QoS attributes or requirements Q = {q1, … , qS} that are associated with it. To express the
semantics of the original MRMOGAP problem as a MILP, it is necessary to classify all attributes
(requirements, constraints) into a specific taxonomy.

The classification outlines the different semantic aspects of the application requirements: whether
they affect linearly the solution quality, or represent fixed constraints, whether they apply to a single
cluster or machine, as opposed to the relationship among a set of distinct clusters/machines, and
whether they relate with consuming shareable or non-shareable resources.

From the viewpoint of the MILP problem encoding, attributes in Q can be classified in two categories:

• ascending/descending QoS attributes, where higher (resp. lower) values of the attribute are
better for the application QoS (e.g., provide higher performance to one of the application
modules). Examples of ascending/descending QoS attributes are the minimum number of
CPU cores, the quantity of available memory or disk space, or the current utilization of a
resource.

• equality QoS attributes, where only equality or inequality constraints are meaningful from the
viewpoint of the application deployment. Examples of equality QoS attributes are the
presence/absence of a particular software feature, e.g., an Operating System (OS) or a
software license, or the availability of a hardware feature, e.g., a Graphic Processing Unit (GPU).

QoS requirements can be also classified into

• intra requirements, that are associated with a single vertex or application component and are
modelled as constraints over the resources of a single data center.

• inter QoS attributes model constraints over a set of resources belonging to different vertexes
(also including constraints over actual network links). For instance, maximum latency or
minimum bandwidth are examples of inter QoS attributes as they are associated with an edge
of the graph, that is with two different graph vertexes.

Requirements may also imply the allocation of resources that cannot be shared.

• A numerical requirement is a metric requirement which refers to a resource that cannot be
shared between different components or communication channels. The required value by the
application reduces the available amount of the resource, as is the case e.g., for the number
of (exclusive) cores, the amount of disk space or the consumed bandwidth of a channel over a
link.

• A non-numerical QoS requirement represents a resource that can be shared under commonplace
assumptions without being consumed. Examples of a QoS requirement that is non-numerical (or
can be assumed to be, in ordinary working conditions) is the maximum latency induced by a
communication channel.

As part of our modelization effort, we also need to model the available portion of the Compute
Continuum. This is done likewise to the application model, by representing the Compute continuum as
an undirected graph GCont =< D, L >, where D represents a set of vertexes and L represents the set
of graph edges that connect those vertexes.

• Each vertex di ∈ D, with i ∈ {1, ... , P} represents a single cluster of the continuum. The resources
associated with each data center are the sum of all the resources available among the devices,
servers and other commodities that the datacenter supervises.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 30 of 180

• Each edge li,j ∈ L , (with V being the size of L) represents an undirected communication link
between two different data centers labelled as di and dj, with i, j ∈ P : i ≠ j. As it is for applications,
each data center Dd and each communication link Lv is associated with a limited amount of
intra-datacenter (intra) and inter-datacenter (inter) resources R = {r1, ... , rT }, i.e. the maximum
number of CPU nodes, memory size, or disk space, or the minimum latency and the maximum
bandwidth over links.

2.2.2.2 Generation of the MILP instance

The MILP problem instance corresponding to a specific orchestration problem requires us to specify
several set of mathematical constraints, each set encoding a specific semantics from the original
MRMOGAP, and in general add both ordinary variables (representing the actual parameters of the
deployment) and auxiliary ones (a standard OR tool to encode particular constraints and non-linear
behaviours within a standard MILP formulation). We exemplify the process by focusing on a simple
deploy instance of limited complexity.

A first set of constraints in the MILP model comes from the fact that the application components in
execution at any point in time cannot exceed the currently available capacity of such resources,
indicated as Cri,j, where ri ∈ R and j ∈ {1, … , M} for intra resources, while j ∈ {1, … , V } for inter resources.

• For every type of QoS requirement qi ∈ Q, there is a corresponding resource ri ∈ R against
which the requirement has to be satisfied. When attributes are used in specifying the
application, they define constraint values to be respected by the corresponding resource
allocated within the Compute continuum. For instance, the QoS requirement of a component
about the number of cores needed to reach an expected performance level must be satisfied by
the number of cores of the datacenter di on which it will be deployed.

• Requirements over edges are analogous, e.g., the maximum latency stipulated by a
communication channel between two different components must be satisfied by the
minimum latency associated to the communication link li ∈ GCont connecting the two
datacenters di and dj where the two components are deployed.

Figure 5: A general form of the MILP optimization problem solved by the CSOS solver plug-in. The groups
of equations from 1 to 12 are related to different combinations of constraint type and modelling purpose.
The semantics of each group are described in the main text.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 31 of 180

In order to express our constraints, we employ a set of auxiliary functions characterizing the set of QoS
requirements. The first such function, called fintra, distinguishes between intra and inter QoS
requirements: it is defined to be 1 in case it is an intra requirement, 0 otherwise. A second
characterization function is used to distinguish between ascending/descending QoS requirements
and equality QoS requirements; as the previous one, it is defined to be 1 in case the requirement is of eq
type, 0 otherwise. Finally, we consider numerical QoS requirements, that imply using up some quantity of
an available resource. We note that numerical requirements in this modelization can be ascending or
descending, but not of the equality type, so we introduce the third and last characterization function
fnum, qualifying numerical versus non-numerical QoS requirements. Using the notation introduced in this
section, we have the optimization problem shown in Figure 5.

In the definition above, we employ a set of integer binary decision variables xi,j. each one representing
whether the component ci, i ∈ {1, … , P}, of application A has been deployed on the datacenter dj, j ∈
{1, … , M}.

Our problem has overall 12 groups of constraints. The constraints of group (1) force each valid
solution to unequivocally deploy each component of the application A on exactly one datacenter.

Constraints in (2), (3) and (4) ensure that any component allocation shall not exceed the resource limits
of the datacenter on which it will be deployed; they differ in the type of QoS and resources they
model. In constraint group (2) we deal with numerical (ascending or descending) requirements: the
characterization functions fnum and finter are applied to each QoS requirements and multiplied with
each other such that the constraint is ignored when the result is zero, since in this case it is always
satisfied independently from the value assigned to the decision variable. Constraints in (3) handle
non numerical (ascending or descending) requirements, while constraints in (4) apply to non-
numerical requirements of the equality kind (i.e., the presence of a certain OS or graphics card, codifying
a specific card model or OS with a unique integer value).

Constraints on requirements and resources defined over communication links are encoded by equation
groups (8), (9) and (10) that, in a similar way to constraint groups (2), (3) and (4), model respectively
numerical (i.e., bandwidth), ascending/descending (i.e. latency), and equality requirements. In both
groups, numerical and non-numerical requirements of type “greater than” are modelled by
changing the sign of both the requirement and the corresponding resource coefficient. For example,
the latency requirement is an ascending non-numerical requirement of the type qlat ≥ Cr

lat,l that is

transformed in the constraint −qlat ≤ −Cr
lat,l .

In our problem modelling we need to check for a requirement over a certain communication channel
between two different components i1 and i2 of the application A, if and only if (a) the two components
are deployed on different datacenters d1 and d2, and (b) a network link exists between d1 and d2.

Some constraints of our model result from applying standard techniques to turn the initial formulation
into one suitable for MILP optimization.

In a straightforward modelization of the optimization problem, that we do not show here, each
inter requirement is modelled by multiplying the two decision variables xi1,d1 xi2,d2 , if and

only if a network link exists between d1 and d2. However, this approach leads to a non-
linear programming problem. Such constraints are easily linearized by introducing a set of
auxiliary binary decision variables yi1,d1,i2,d2 , such that

 yi1,d1,i2,d2 = xi1,d1 xi2,d2 , ∀i1, i2 ∈ {1, . . . , N} and d1, d2 ∈ {1, . . . , P} : i1 ≠ i2 and d1 ̸= d2.

To restrict the new problem to the same set of solutions of the first modelization, we also need to introduce
the new sets of constraints (5), (6) and (7). The constraints in (6) and (7) ensure that yi1,d1,i2,d2 = 0 if

xi1,d1 = 0 or xi2,d2 = 0. On the other hand, the constraints in (5) ensure that yi1,d1,i2,d2 = 1 if and only if

xi1,d1 = 1 and xi2,d2 = 1.

Finally, constraint groups (11) and (12) restrict to Boolean values our decision variables x and auxiliary

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 32 of 180

variables y.

The objective function is a general utility function over the two vectors of the decision variables of
the optimization problem, x and y. Such utility function can encode a utility value specified by the
owner of the application, exploiting a linear combination of the coefficient of the optimization
problem, The objective function thus embeds the policy metrics that we want to be optimized by the
orchestration.

2.2.2.3 HLO Approach Evaluation

To assess the viability of a multi-layered version of the HLO in overcoming the potential scalability
limitation of MILP-based matchmaking processes, we show two sets of experiments, each set run using
a different scenario. The LARGE scenario considers a larger set of different edge virtual clusters (70
EMCs = 700 computing nodes), but lower contention (500 app instances) with respect to the MEDIUM
scenario, where a smaller set of virtual clusters (50 EMCs = 500 computing nodes) manages a higher
contention for resources (400 app instances).

We used fixed structure applications, where the requirements declared by each application in terms
of resources are parametric and randomly generated as follows in Table 1:

Table 1: Application and Resource parameters for the evaluation.

App parameter /
Cluster Capabilities

Distribution Application
 range

Virtual cluster
resource range

CPU cores random uniform [1,8] [20,100]

RAM random uniform [128,1024] Mbytes [2048,4096] Mbytes

Storage random uniform [10,128] Gbytes [200,1000] Gbytes

The experiments have been performed using a relatively homogeneous set of resources. We fixed the
number of nodes managed by each EMC to 10, and randomly generated the features of the EMC nodes,
as also reported in Table 1 above.

Both scenarios have been simulated by running an instance of the MILP solver on a local Intel 4-cores
i7600K CPU machine, with 16 Gbytes of RAM and feeding it with a TOSCA file describing each
application instance, taking each one from a file of randomly generated deployment requests and
applying the request parameters to the TOSCA Blueprint. The test performs the matchmaking with
MILP-based solver and produces an output file with the final deployment plan, where each unique
application request is associated with a virtual cluster. In the output file each result is associated with
the time in seconds that the matchmaking process required.

We compare a “flat” version of the orchestration with a layered one, reproducing the HLO/LLO
interaction by having a central HLO that delegates local orchestration to each virtual cluster. In the flat
version a single MILP module must solve the matchmaking over the whole group of resources in the
platform. In the layered version each MILP instance is instead invoked once to matchmake on the
groups of aggregated resources, i.e., the groups associated to the EMC virtual clusters, and then once
per each involved EMC (to simulate the local orchestration by LLO on the 10 nodes of the EMC).

As we show in Figure 6, MILP solver execution time both for the MEDIUM (left) and LARGE (right)
scenarios, the time needed to solve a single MILP problem for the whole platform and set of requests
is not acceptable, showing that optimal orchestration with MILP does not easily scale to large platforms
if we model the architecture in a flat way. The size of the MILP problem, whose key characteristics are
shown in Table 2 for the LARGE scenario, grows too quickly. On the other hand, if we group resources
by virtual clusters and optimize the MILP first at the high level and then locally for each domain, the
service time of the optimization process is well below one second for all tests. We can see in Figure 6
that the cost of the central MILP solution (marked as Sauron in the plot) is around 10-2 - 10-1 s. The
MILP approach cost for the local orchestration is a safe over estimation of the time required for the
low level orchestration, which in the CHARITY platform is delegated to the LLO, and it is comparable
with the high-level MILP execution time.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 33 of 180

The results validate the solution of layered orchestration according to the HLO/LLO decomposition
even for the case of detailed QoS models and costly optimization algorithms, as long as resources are
grouped together by their virtual clusters, allowing the high-level orchestrator to deal with one or more
orders of magnitude less variables via its (MILP) solver plugin.

Figure 6: MILP solver execution time in seconds, flat vs layered execution (Sauron = main HLO); (left) MEDIUM
scenario (right) LARGE scenario.

Table 2: Number of MILP variables and constraints in the LARGE scenario, flat vs layered orchestration.

Orchestration Version #apps #resources Decision
variables

#constraints
in group 1

#constraints
in group 2

Flat (single MILP instance) 500 700 350000 500 2100

Layered (Sauron = top level HLO) 500 70 35000 500 210

Layered (domain HLO or LLO) *worst case *500 10 *5000 *500 30

To conclude, the above-mentioned Complex Scenario Optimal Solver (CSOS) tackles the Multi-
Resource Multi-Objective Generalized Assignment Problem (MRMOGAP) for optimally deploying
application components across available resources in the CHARITY federation. This is done by
formulating the MRMOGAP as a Mixed-Integer Linear Programming (MILP) problem. CSOS parses the
application's TOSCA blueprint and gathers data on available resources to generate the MILP instance,
encoding constraints such as not exceeding resource capacities, satisfying component requirements
(e.g. CPU, memory, latency), and ensuring each component maps to exactly one resource. It then
solves the MILP problem using solvers like COIN-OR CBC to find the optimal allocation. If a solution
exists, CSOS augments the blueprint with allocation details for deployment; otherwise, it requests
additional resources from the orchestrator. The CSOC facilitates the HLO module to perform the high-
level phase of resource allocation in the CHARITY platform by deciding on the most suitable
deployment topology with regard to the specific XR application deployment requirements and
resources available in the CHARITY deployment targets.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 34 of 180

3 Low Level Orchestration

This section delves into the solution design for the Low-Level Orchestrator (LLO) intending to provide
the means to enforce proper resource instantiation in multi-domain infrastructures. The Low-Level
Orchestrator is the component of the system responsible for infrastructure provisioning, networking,
and application deployments. It receives application specifications and orchestration decisions from
the High-Level Orchestrator. Subsequently, it implements these decisions made regarding the
distribution of application components across the existing infrastructure. The LLO can also serve as an
interface for system administrators to interact with the system, leveraging their technical knowledge
and familiarity with low-level topics. This provides them with more control and advanced
customization capabilities.

Figure 7: The High Level Concept behind CHAIRTY´s LLO – Management Cluster and Distributed Clusters on a
Multi-Domain Infrastructure.

A brief description of the components composing the LLO architecture is given below (see Figure 7):

• Custom Resource Definition: The CRD contains the most up-to-date information regarding the status
of the infrastructure.

• Operator: The operator is responsible for monitoring the CRD and handling its changes (i.e., insert,
delete and update). When a change to the CRD is detected, the operator acts accordingly. For instance,
adding a cluster definition to the CRD will trigger a new cluster provisioning. The operator was inspired
by the ETSI ZSM standard and closed-loop concept as a way to orchestrate and automate a Kubernetes
based environment.

• Backend: The backend is responsible for executing the changes to the infrastructure detected by the
operator. The backend is complemented by a REST API that the operator uses to request the changes
detected, and the backend uses the data received to translate the changes (e.g., the operator requests
the creation of a cluster, sending the data collected from the CRD, the backend uses the data to create
the cluster in the infrastructure and reports the feedback).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 35 of 180

• Monitoring Aggregation: It is responsible for collecting metrics exposed by the different components
composing the orchestrator, as well as infrastructure metrics (e.g., number of clusters running, number
of providers, number of applications).

• Dashboards: The dashboard allows visual feedback of the metrics collected by the monitoring
aggregation component.

• Distributed Multi-Domain Infrastructure: The infrastructure relies on different cloud providers that
will host the clusters for the applications. An application can be distributed or replicated across
different clusters and cloud providers. The clusters can be connected across different providers, if the
distribution of the application demands it, as to guarantee communication between the components
comprising the application.

The orchestrator is prepared to be distributed across clusters, as each of the components composing
the orchestrator is independent. For example, the backend could be in a different cluster than the
operator and it will not affect the orchestration system’s operation, as long as the clusters have access
to each other. This independence is given through the developed middleware, acting as a bridge
between the components. The orchestrator is also prepared to support different cloud providers and
as such, the environments created by the orchestrator can be distributed across the supported
providers.

3.1 Operator Concept

The low level part of the CHARITY Orchestration systems receives the orchestration decision from the
high level ones. The corresponding decision is formalized using an orchestration blueprint that defines
the end state that the low-level orchestration should achieve. This later analyses the current
orchestration state and creates an execution plan to reach the communicated target state. In case of
a failure, a remediation plan is followed.

The core of the low level orchestration is based on a Kubernetes Operator implementation and handles
the automatic lifecycle management of a given orchestration. It is important to note that operators
are custom extensions to built-in Kubernetes controllers which are the main components of the control
plane in Kubernetes. It is considered a state of the art for the orchestration of static applications
workload in a cluster. Our operator implementation extends Kubernetes to manage multi-domain
cloud orchestration and inter-domain connectivity as explained below.

Since Kubernetes represents the core of our system, specifications for clusters and applications need
to be defined in a way that is compatible and readable by the Operator and transformed in resources
that can be used by the Kubernetes infrastructure. In our case, Custom Resource Definitions (CRDs)
serve as the specification format. They extend the Kubernetes API, enabling users to define and use
their own custom resources alongside the default resources managed by Kubernetes itself. As shown
in Figure 8, we have defined a CRD containing three different elements: Clusters, Links, and
Applications. From the CRD, multiple instances of resources can be created depending on the required
specification.

Leveraging both CRDs and Operator concepts, the LLO monitors changes to the resources and takes
actions to reconcile the current state of the resource with its desired state, providing major automation
in the management of the infrastructure and the deployments. These components play a crucial role
in streamlining complex tasks through the use of dedicated frameworks designed to simplify their
implementation. This feature enables developers to focus more on the application logic, leading to
accelerated iteration and development cycles.

Following this idea, the operator assumes two primary responsibilities. Firstly, it verifies whether
Custom Resources (CR) created by the user adhere to the custom resource definition (CRD). Failure to
comply with the CRD leads to unsuccessful resource creation. Secondly, the operator actively monitors
Custom Resource (CR) events, including creation, update, deletion, and more. For each event, it
executes the predefined logic, ultimately facilitating the reconciliation of the resource's current state

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 36 of 180

to its newly specified desired state. This dual role ensures the integrity and consistency of the system's
resources throughout their lifecycle.

Figure 8: Custom Resource Definition (CRD) in the CHAIRTY´s LLO.

The implementation of such operator, constantly monitoring the defined CRs, was though to respect
the Observe, Orient, Decide, Act (OODA) loop, represented in Figure 9. First, the operator is waiting
for the monitored resources to change (observe phase). If any change is detected, the operator is
responsible for admitting and validating the change, which consists of checking if the change is allowed
and syntactically valid (orient phase). Based on the changes made to the resources, it detects what
type of operation is needed (i.e. create, update, delete) and decides how to act based on the type of
operation, outlining the execution plan (decide phase). Finally, based on the decision from the previous
step, instead of executing the decided action himself, it requests action from the backend component,
responsible for changing the infrastructure according to the data and demands received from the
operator (act phase). This describes the recurring working process of the operator.

Figure 9: Operator’s OODA Loop.

3.2 Multi Domain Cloud Orchestration

To materialize the automation capabilities brought by the operator, there is the backend which is a
containerized component running on the management cluster designed to meet the needs of the
operator. Each event (creation, deletion, update) that the operator monitors undergo a complex
process in the backend, performing all the necessary tasks for the event to be successfully completed.

The backend handles all the heavy-duty operations of the orchestration system involved in updating

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 37 of 180

the infrastructure (i.e., when requested to create a cluster, the backend communicates with Cluster
API and OpenStack to create said cluster). The backend exposes a REST interface used by the operator
to request changes to the infrastructure. The REST interface is implemented with FastAPI. To deliver
most of the operations, the backend integrates with Cluster API, Openstack and Liqo. The backend
working cycle starts when the operator detects a change in the CRD, which also demands a change in
the infrastructure. This triggers a request to the backend REST interface, making then the backend act
accordingly (activating a functionality) to the request itself and data received within the request. This
should be assumed for all the functionalities explained in more detail, further in this Section. All the
cluster operations made by the backend (i.e., create, update, delete, interact) integrate the Cluster API
framework, enabling more powerful and robust functionalities, and a better-managed infrastructure
as the clusters and its resources (i.e., worker machines, control-plane machines) are stored as CRs and
are independent per cloud provider (i.e., Openstack, AWS, BYOH) and per bootstrap provider (i.e.,
Kubeadm, MicroK8S, K3S). As default bootstrap provider and cloud provider for the functionality’s
explanation, found further in this Section, it should be assumed Kubeadm and Openstack, respectively.

The LLO relies heavily on Cluster API which provides a declarative API for cluster creation,
configuration, and management. It allows users to define the desired state of their Kubernetes clusters
using YAML manifests. The Cluster API controllers then work to reconcile the actual state with the
desired state, ensuring that the clusters are provisioned and maintained according to the specified
configuration. This abstraction layer makes it easier to automate cluster management tasks, deploy
clusters across different cloud providers or on-premises environments, and maintain consistency in
cluster configurations.

The cluster creation process includes the creation of the VM, which will host the cluster and the
bootstrapping of the cluster itself. The creation of a cluster starts by loading the correct bootstrap and
cloud provider (e.g., Kubeadm and Openstack, respectively) from Cluster API based on the data
received from the operator, which is also stored in the CRD. Following this, the backend runs a script
that generates the cluster CR based on a CRD from ClusterAPI, and filled using the data (i.e., name,
image, machine count) from the request. During the generation of the manifest, it is also added to
PostKubeadmCommands field of the generated cluster CR, bash commands to download, install and
configure the CNI of the cluster automatically. Although this makes the creation of the cluster slightly
slower, it is rewarded with the creation of a cluster ready to use. After the generation of the cluster
manifest, it is then applied using the kubernetes CLI. The management cluster is able to interpret the
manifest as it is based on the Cluster API CRD. During the cluster deployment, after the host VM is
created, it is also created a floating IP. The floating IP is used by Cluster API to generate the cluster
access file (kubeconfig). Although the creation of the floating IP is done automatically by Cluster API
and Openstack, the assignment of this IP to the VM is not. The automation of this step is central for
seamless cluster creation, so a solution was implemented. This assignment is done by checking if the
VM is created, by checking the Cluster API CRs, and when it is created, it assigns the floating IP
previously created to the host VM, automating the floating IP assignment step. Finally, the backend
waits for the cluster to be ready which is when all the nodes of the cluster achieve a READY status. The
orchestrator supports the installation of add-on packages (i.e. Liqo, NGINX, MetalLB, Prometheus,
Kafka) and these packages can be installed after the cluster is ready. Due to infrastructure limitations,
these packages are all installed by default with every cluster apart from Kafka as it is a more resource
intensive add-on. The cluster creation is truly finished when all the selected packages are installed.
After the cluster is created and ready, it is possible to scale the cluster. The orchestrator supports
scaling the control plane nodes and the worker nodes, which can be scaled individually. The operator
sends the cluster’s name, the control plane node count and the worker node count saved within the
CRD. As the control plane and worker machines are stored in individual CRs, the backend is capable of
distinguish between them and checks for the resources individually. If the resources exist, the backend
changes their replica count to the desired value, Cluster API detects changes to the CRs and acts
accordingly, scaling the cluster nodes, up or down. For cluster deletion, the operator sends the cluster’s
name registered in the CRD. As the cluster resources are uniquely named, the backend checks for the
CR residing in the management cluster and proceeds to delete the Kubernetes resource. Subsequently,
this triggers the deletion of the cluster in the infrastructure.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 38 of 180

The orchestrator is prepared to deploy containerized applications in clusters hosted within the
providers integrated with Cluster API. If the applications are composed of more than one component,
the whole application can be deployed in a single cluster or distributed across different clusters. The
application deployment process begins with a request sent from the operator to the backend with the
information regarding the application registered within the CRD. The backend translates the
information received into native Kubernetes resources (i.e., deployment, services, ingresses) and
deploys each component individually, as not all the components need to be exposed through an
ingress or even a service. It is also during this step that the backend distributes the components across
different clusters using Liqo’s offloading feature according to the information registered within the
CRD. The clusters where the components of an application should be deployed are included in the
information gathered from the CRD, as each component may have a different cluster associated. The
backend uses Kubernetes labels and adds the name of the cluster as a label to the Kubernetes
deployment resources of each component (the Kubernetes deployments are created from custom
templates) with the name of the cluster associated to the component. As labels are native to
Kubernetes, Liqo already knows how to leverage them during the offloading phase done by the
backend using a bash command via the Liqo CLI, installed in the backend component. As every
application and its components are namespaced Kubernetes resources, when the deletion process is
requested by the operator, the backend receives only the name of the application, which is used to
identify the namespace where the application is deployed. Even if the application is distributed across
clusters, as the identification of the namespace is kept across clusters, the backend unoffloads the
namespace regardless of the application being distributed or not, as it does not affect the outcome or
the performance of the process. After the unoffloading, the backend deletes the namespace and all
the Kubernetes resources within.

Figure 10: Orchestration system handling the AMF Input.

In order to enable the trigger of the LLO’s operations and following the communication standards
within the context of the CHARITY project, the LLO has the responsibility to transform high-level data
sent from the AMF/HLO to the infrastructure level (i.e., Kubernetes Custom Resources (CR)), bringing
abstract concepts from NFVs (e.g., Virtual Links, Connection Points) to Kubernetes, where there’s not
a direct mapping. To fulfil this responsibility, a parser was developed to enable communication
between the LLO and, subsequently, with the infrastructure. The parser is used whenever a
deployment-related endpoint is called. The input of these endpoints are TOSCA blueprints which are a
standard to define and specify cloud applications. The TOSCA parser acts as a translator of the TOSCA
blueprint to changes in the LLO CRs. Following the changes in the CRs, the LLO detects the required
operations at the infrastructure level and creates/updates/deletes the Kubernetes resources needed
to deploy such changes. For instance, as aforementioned, these TOSCA blueprints hold attributes such
as Virtual Links and Connection Points which are ultimately converted to Kubernetes Services to be
applied to the actual infrastructure, this workflow can be seen in Figure 10. Moreover, attributes such
as Nodes and Components, present in the TOSCA specification, are converted to Kubernetes resources
(e.g. deployments) which allow the actual instantiation of applications in Kubernetes-based
environments. Besides the application’s specification, the TOSCA blueprint also allows the definition
of output variables to be returned by the LLO. The parser extracts the variables specified in the
blueprint so that the LLO can retrieve them to the AMF/HLO. The output parameters can range, for

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 39 of 180

instance, from the URL of a service to the Kubernetes namespace where the services are deployed.

Figure 11: TOSCA Model Example.

In Figure 11, an example of a TOSCA specification can be seen. The TOSCA model possesses four major
types of elements: the Components, the Nodes, the ConnectionPoints, and the VirtualLinks. All these
elements have diverse attributes and requirements that need to be translated to actual components
that can be perceptible to Kubernetes. The Components are the elements that provide information
about the service itself, such as the image and the name of the service. The Nodes have information
about the components of the application, such as the image and the technical requirements of the
service. The VirtualLinks provide mainly information about the technical requirements of the
connection, such as the minimum bandwidth and the maximum latency required. The
ConnectionPoints have information about the exposition of the components. Specifications such as
the port and the protocol of the service, as well as the VirtualLinks to which the service is associated.
In this way, it is possible to know which components are connected to which and how the
communication between them is supposed to be done. To accomplish the propagation of the output

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 40 of 180

parameters mentioned above, there is the outputs field. Each output instance holds the name of the
element related to the needed variable (e.g. a specific connection point) and the actual variable (e.g.
URL) to be returned by the LLO in a specific deployment. Additionally, each output parameter has a
description and the type expected by the HLO/AMF.

Figure 12: Parsed Input Example.

With the parsing of the TOSCA model, the system obtains a YAML similar to that shown in Figure 12.
In this example, the information represents the TOSCA data in a Kubernetes-like language. This
information is split by the components obtained via TOSCA specification. Within the “components”
field, there can be a great variety of attributes regarding each component including the “service”,
which represents some attributes that the system needs to define how to expose the component
within the context of a Kubernetes service, the “env” that contains the environment variables needed
by the component and the output-parameters which, although not useful in the scope of Kubernetes
resources, are stored to be retrieved ahead. Moreover, attributes such as the image, the name, and
the destination cluster of the components are also extracted. Furthermore, LLO converts this
information into actual Kubernetes resources (e.g. deployments).

3.3 Inter Cloud Domain Connectivity

Regarding cluster interconnectivity, the backend integrates Liqo framework, which, in addition to
providing a solution to cluster interconnectivity, provides support to workload distribution across the
connected clusters. Using a peer-to-peer approach, Liqo provides interconnectivity between clusters,
allowing workload offloading, service distribution across clusters, and multicluster applications traffic
routing. Liqo becomes essential to enable seamless and secure communication among services
deployed across various clusters distributed in multiple geographical zones. Liqo is an open-source
project that enables dynamic and seamless Kubernetes multi-cluster topologies, supporting
heterogeneous on-premises, cloud, and edge infrastructures. It provides several key features such as:

• Peering: Automatic establishment of VPN tunnel between two clusters (local and remote). The
local cluster is the consumer of resources, and the remote cluster is the provider. The peering

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 41 of 180

process results in the creation of a virtual node in the local cluster acting as an abstraction over
the resources provided from the remote cluster.

• Offloading: Offloading occurs after the peering process concludes. Once the virtual node is
operational in the local cluster, workloads can be offloaded by scheduling them to run on that
virtual node. Subsequently, Liqo will automatically transfer these workloads to the remote
cluster where they will be executed. Networking configurations of the workloads are also
synchronized between the two clusters, enabling services to communicate seamlessly, as if
they are running on the same cluster.

The features implemented by the orchestrator that integrate with the Liqo framework, are also
exposed by the backend to the operator via HTTP endpoints. The starting point of the interconnectivity
is the cluster peering. The backend receives the names of the clusters that should be peered with Liqo
from the operator which are contained within the CRD. For the peering process, the backend does a
series of checks, to make sure the peering can begin. The checks are done individually by cluster and
only when both clusters pass all the checks, the peering process begins. First, the backend checks if
the clusters are already deployed and ready. If this first check is verified, the backend generates the
“.kubeconfig” files to access the clusters via the Cluster API CLI and perform the remaining checks.
Accessing the cluster, the backend checks for the list of components composing the Liqo framework,
verifying if they are ready and available. After all the checks for both clusters are validated, the clusters
are peered, using the Liqo CLI (installed in the backend). As it functions similarly to the Kubernetes CLI,
the “.kubeconfig” files used to access the clusters can be inserted as a parameter and the clusters are
peered. If the cluster checks are not valid, the peering process stops. With peered clusters, it is possible
to distribute components of an application, using Liqo’s offloading capabilities. These capabilities allow
the reflection and execution of workloads in remote clusters. Liqo allows to offload namespaces,
services, and pods. For example, when offloading a namespace, Liqo extends it by creating an identical
twin namespace in the remote cluster. This enables pods and services to operate within this shared
cross-cluster namespace.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 42 of 180

4 Monitoring & Forecasting

Monitoring encompasses the process of collection, analysis and use of information systematically, that
provides the continuous visualization and perception of the status of an application, service or
infrastructure. Such continuous monitoring process provides a way to analyse the environment to
check whether applications and infrastructure run as expected. Indeed, the real-time monitoring of
the environment allows, for instance, to minimize the response time to incidents (e.g., the detection
and mitigation of cyber-attacks). Whenever an incident happen beyond the expected behaviour, it is
possible to timely take the appropriate actions and decisions. In past, monitoring fundamentally served
as a decision support for manual interventions of service and infrastructure administrators. As we
progress into more complex and challenging scenarios, as envisioned in CHARITY, monitoring and
prediction algorithms (based on the instrumented metrics) assume a new relevance in the
orchestration and life-cycle management of next-generation applications. The input is formed upon
which all the intelligent orchestration mechanisms are built. The concept of closed loops control and
the envisioned automation of intelligent orchestration highly depends on a comprehensive real-time
monitoring approach and on the quality of collected metrics.

This section explains the monitoring framework implemented for CHARITY to reach a dynamic multi-
cluster architecture. Also, it details the data gathered, used as a data source for forecasting algorithms
and responsible for activating the custom alerting system that leverages real-time and predicted
performance information.

4.1 Goals and Research Challenges

In a Cloud Native environment, the monitoring process has a critical role to provide the required
observability over the complex (and potentially large) number of micro-services spanning across
distinct domains. Manually monitoring such an environment is no longer a viable task, instead the
usage of monitoring tools allows the achievement of the required degree of automation. As we move
towards intelligent orchestration platforms such as the CHARITY case, resource monitoring would play
a critical role into supporting not only automation but has also a valuable input for all the resource
prediction algorithms, as detailed later.

Monitoring tools provide observability over metrics at different levels, such as excessive or unusual
CPU utilization patterns which might impact the system performance, memory-related metrics to
detect memory leaks and other unexpected behaviours, disks running out of space, unauthorized
network traffic flows or slow/bogus service APIs responses. In Cloud Native environments, such
monitoring tools are used to ensure that infrastructure assets including servers, nodes, pods,
containers behave as expected.

Resource monitoring, especially within a Kubernetes cluster, is a daunting and challenging task. There
are literally hundreds of metrics which can be extracted from all the layers, components and
applications and not all of them are always relevant for every single orchestration task. For instance, a
network state prediction algorithm will likely need only a subset of network-related metrics.
Additionally, dynamic, ephemeral and loosely coupled micro-services pose an architectural challenge
of how to extract and collect all the different service-related metrics.

Hence, in a Cloud Native environment, one of the biggest challenges is not only to understand which
metrics should be used but the efficiency and efficacy of the collection, aggregation and all the
preprocessing, which ideally should occur near real-time. This challenge is further aggravated when
one considers the traits of next generation of XR applications such as their latency constrains and the
amount of involved data. Likewise, the monitoring of specific XR metrics poses different challenges.
For instance, measuring the quality of a video streaming as perceived by users as part of the overall
QoE assessment is a major challenge [1].

Moreover, monitoring tools should also have the following characteristics [2]: extensibility to
accommodate scalable and dynamic environments in a flexible way; portability to enable the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 43 of 180

monitoring of distinct heterogeneous platforms and services; non-intrusiveness to avoid the
interference with the resources that are being monitored (e.g., monitoring tools should not impact the
already-constrained latency of XR applications);multi-tenancy to allow the monitoring of shared
resources, accessibility; usability; robustness and achievability. The premises of the CHARITY project
add new degrees of complexity:

• Multi-cloud: The CHARITY platform seeks to achieve the extreme KPIs required by XR
applications enabling dynamic deployment of microservices, which implies a changing
architecture of virtual applications through time. Each provider offers native monitoring tools
to control and visualize the performance of their Kubernetes clusters and the services
deployed. Hence, the use of cloud providers monitoring tools is not viable since the change of
a server from one cloud to another should not be perceived by UC owners.

• Heterogeneity: The focus on XR applications supposes the opening to technologies beyond the
well documented traditional ones. Being an area in full development, the components,
languages and KPIs are still being defined and will not stop advancing as the use of XR reaches
the personal use. The monitoring platform must adapt to the demands of development of the
XR itself.

The goal of CHARITY’s monitoring tool is to meet these architecture requirements without involving
UC owners in the complex architecture wherein their application components are deployed. Therefore,
agnosticity is the main requirement for monitoring: it must support all kinds of technologies, hardware
and software, languages and service provider companies. CHARITY’s monitoring tool should reduce
the complexity of the underlying architecture, at least abstracting the UC owners from it into this
constant point of contact they will have to control the performance of their applications and each of
the microservices that make them up.

Prevention and reactivity are the objectives to reach with CHARITY and monitoring is a key part of it as
it is one more piece in the chain of analysis, prediction, reaction and modification. The tool must adapt
itself as dynamically as the application architecture itself will do based on multi-cloud performance
and requirements. Table 3 summarizes the above discussion and gives an overview on the monitoring
requirements.

Table 3: Overview of monitoring requirements.

CHARITY
Feature

Requirements Orientation

Heterogeneity Native monitoring
Support for all clouds
Multiple providers and
technologies

Cloud agnostic
Monitor services, resources and
network

Complexity Traceability of problems Certain level of abstraction on the
different clouds in use

Single panels

Prevention Customer impact
Interrupted services

Analyse data and trends
Proactive architecture

UC abstraction Human involvement
XR scopes continuously evolving

Cloud agnostic templates to automatize
changes in monitoring system

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 44 of 180

4.2 Enablers and Tools

This section provides an overview on the considered monitoring tools, mainly focused on open-source
tools that were investigated for supporting the monitoring of the infrastructure, applications and
services as part of the CHARITY framework. Namely, it presents Prometheus and Grafana, ELK Stack,
Kubewatch, Weave Scope, Zabbix, cAdvisor, Jaeger, Dynatrace and Datadog [3][4][5].

• Prometheus5 is an open-source tool for monitoring (and alerting events) systems, services and
applications. Prometheus collects the target metrics at certain intervals, evaluates the
configured thresholds, and triggers alerts if any condition is true. Prometheus relies on the
concept of exporters to export and send metrics from third-parties components to a central
server. The communication between exporters and Prometheus Server is done via HTTP by
default. In a Kubernetes deployment, a Prometheus server can leverage Kubernetes API and
service discovery capabilities to directly pull specific node and service metrics. Grafana6, often
used to complement such metric collection, provides a flexible way to query the metrics
persisted by Prometheus (using PromQL) and visualizes them into graphical dashboards.
Grafana can be also leveraged for implementing alert functions.

• ELK stack7 comprises the combination of ElasticSearch, Logstash, and Kibana. Together, they
allow the collection of data from different sources in different formats and provides real-time
data analysis and search capabilities. First, Logstash is used for collecting, transforming and
sending data in real-time from data sources to ElasticSearch. Then, ElasticSearch, a search and
analysis engine, supports the implementation of distinct analytics capabilities on the top of the
collected data. Finally, Kibana, similar to Grafana, allows visualizing all of that data in the form
of dashboards. Likewise, the combination of ElasticSearch, Fluentd and Kibana, known as EFK
stack [6], can be also adopted. In that case, Fluentd replaces Logstash, as the component used
to retrieve and ingest data into the ElasticSearch engine (e.g., it supports the ingestion of
specific Kubernetes node related metrics). Moreover, Elastic Cloud on Kubernetes (ECK) [7],
an ElasticSearch managed service, built on top of the Kubernetes Operator, allows to further
streamline the ElasticSearch and Kubernetes integration by providing features such as the
management and monitoring of multiple clusters or the cluster scale-in/down configuration
changes.

• Kubewatch8 is a Kubernetes specific open-source watcher used to track and notify changes of
Kubernetes specific resources (e.g., pods, services, deployments, replica sets, replication
controllers or even configuration maps). Whenever it detects configuration changes, it
generates a notification to predefined collaboration hubs. Although this tool does not offer
long term storage, trending, or analysis capabilities, it provides a simple and Cloud-Native
approach to monitor for unexpected service modifications (e.g., as a result of a cyber-attack).

• Weave Scope9 is a monitoring and visualization tool capable of providing operational insights
from Kubernetes clusters. Weave Scope automatically generates topology maps of
applications and infrastructure, enabling to intuitively understand and monitor context details
(such as metrics, data or tags) and control containerized applications in real-time (e.g., stop,
restart and pause containers as needed).

5 https://prometheus.io/

6 https://grafana.com/

7 https://github.com/elastic/elasticsearch

8 https://github.com/bitnami-labs/kubewatch

9 https://www.weave.works/oss/scope/

https://onlyoffice.eurescom.de/ds-vpath/6.4.2-6/web-apps/apps/documenteditor/main/index.html?_dc=6.4.2-6&lang=en-GB&customer=ONLYOFFICE&headerlogo=https%3A%2F%2Fonlyoffice.eurescom.de%2Fskins%2Fdefault%2Fimages%2Flogo%2Feditor_logo_general.png&frameEditorId=iframeEditor&parentOrigin=https://onlyoffice.eurescom.de#_ftn3
https://onlyoffice.eurescom.de/ds-vpath/6.4.2-6/web-apps/apps/documenteditor/main/index.html?_dc=6.4.2-6&lang=en-GB&customer=ONLYOFFICE&headerlogo=https%3A%2F%2Fonlyoffice.eurescom.de%2Fskins%2Fdefault%2Fimages%2Flogo%2Feditor_logo_general.png&frameEditorId=iframeEditor&parentOrigin=https://onlyoffice.eurescom.de#_ftn5

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 45 of 180

• Zabbix10 is an open-source software tool to monitor various devices, systems and applications
through a large number of available integrations, both agent-based and agentless. For
instance, it allows collecting from resource consumption and application-specific metrics up to
auto-discovery of pods, deployments, services in Kubernetes deployment. Designed with
automation in mind, Zabbix supports the monitoring of large and dynamic environments by
offering auto-registration and discovery capabilities.

• cAdvisor 11 is an open-source agent to collect, process and export resource usage and
performance information relative to running containers. Part of the Kubelet binary of
Kubernetes, cAdvisor agent, can auto-discover containers in execution and collect resource-
related metrics, such as memory, CPU, disk, files or network. Although cAdvisor does not offer
long term storage, trending, or analysis capabilities, thus requiring a complementary
monitoring solution. Nevertheless, its Kubernetes integration makes it a simple but effective
tool for exposing container-level resource consumption metrics in a Cloud Native environment
as a Kubernetes deployment.

• Jaeger12 is an open-source solution that provides end-to-end distributed tracing capabilities
such as consistent upfront sampling with individual per service/endpoint probabilities.
Amongst others, Jaeger features can be leveraged to optimize the performance and latency of
the services, an important aspect of the underlying concept of CHARITY. Jaeger provides a
native Kubernetes integration through the implementation of a Kubernetes Operator (i.e.,
Jaeger Operator) which is composed of the Agent, Collector, Query components. The agent,
which can be automatically injected as a sidecar, interfaces with the Jaeger clients
(implementing an OpenTracing API for each application) and abstract the routing and
discovery of the collectors. The Jaeger Collectors are responsible to receive the information
from the agent, process it and store it in a specific storage backend. Finally, Jaeger Query
provides the UI interface with the stored traces. Despite the benefits of such a tracing
monitoring solution, the applications need to be aware of it and need to be designed to include
the Jaeger client which exposes the OpenTracing API.

• Dynatrace13 is a platform that has a solution to Infrastructure Monitoring that provides a
unified view across the full Kubernetes stack, from applications to infrastructure and user
experience. Dynatrace enables automated and intelligent observability with continuous auto-
discover of hosts, virtual machines, cloud servers, containers and Kubernetes. Similar to
Jaeger, Dynatrace provides a native integration for Kubernetes clusters, by implementing a
Kubernetes Operator, named OneAgent. This agent can run as a DaemonSet in a Kubernetes
cluster. It provides observability over the infrastructure and application levels in an automated
and continuous way. Dynatrace allows for collecting resource consumption metrics of cluster
components (i.e., containers, pods, nodes) up to controlling costs or root cause analysis of
detected issues. This tool is not open-source as the aforementioned ones.

• Datadog14 is a service that provides data observability to applications in the cloud and enables
the monitoring of servers, databases, tools and services through a SaaS-based data analysis
platform. This solution provides a platform that helps to monitor and track end to end
requests, application performance, automatically collection, correlation and search of logs. To
deploy Datadog, there are two different options: the deployment of Datadog agents as

10 https://www.zabbix.com/

11 https://github.com/google/cadvisor

12 https://www.jaegertracing.io/

13 https://www.dynatrace.com/

14 https://www.datadoghq.com/

https://onlyoffice.eurescom.de/ds-vpath/6.4.2-6/web-apps/apps/documenteditor/main/index.html?_dc=6.4.2-6&lang=en-GB&customer=ONLYOFFICE&headerlogo=https%3A%2F%2Fonlyoffice.eurescom.de%2Fskins%2Fdefault%2Fimages%2Flogo%2Feditor_logo_general.png&frameEditorId=iframeEditor&parentOrigin=https://onlyoffice.eurescom.de#_ftn9

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 46 of 180

sidecars in all pods or the deployment of agents at the host level. Similar to Dynatrace, Datadog
is not open-source.

• Kafka15 is not a monitoring specific tool but an open-source distributed event streaming
platform. Kafka was considered as part of the implementation Integration Fabric concept in
the CHARITY framework. It is here referred to as a pivotal enabler to support not only the
efficient communication between components but also the collection and aggregation of
metrics from different heterogeneous assets and monitoring tools. Kafka is a widely used
solution for implementing the messaging bus pattern. Clients (producers and subscribers) can
asynchronously exchange messages with a common bus (i.e., Kafka topics and partitions). This
provides a more decoupled communication strategy where each part (i.e., the CHARITY
components) can publish and consume data as needed in a shared and dynamic environment.
From a monitoring standpoint, such a model can be used to allow different monitoring
components to expose their observed metrics. Then, each of the orchestration and
management functions, according to their specific goals, can subscribe to such metrics.
Moreover, Kafka provides a strategical role in the monitoring process itself as it allows to have
a scalable and intermediate persistent layer for storing metrics with fault-tolerance
capabilities. Additionally, Kafka Connect and Kafka Streams can also play an important role to
facilitate the process of retrieving and consuming data from distinct tools in different formats
and to support the pre-processing capabilities.

Table 4 presents a brief comparison of the aforementioned monitoring tools based on the initial
findings and survey work [8].

Table 4: Comparison between monitoring tools.

One of the first parameters compared was the alerting capabilities. In CHARITY, these alerts are an
important input for triggering automated response actions. cAdvisor and Jaeger do not natively
support them, thus if needed it needs to be developed. Nevertheless, Jaeger offers unique service
tracing capabilities not found in other tools and it might be of interest to have them in CHARITY.

15 https://kafka.apache.org/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 47 of 180

Despite the benefits of Dynatrace and Datadog, they are not open-source which can pose adoption
barriers or customization issues. Kubewatch is useful for monitoring basic configuration changes but it
does not fit into the purpose of collecting distinct metrics from a Kubernetes cluster. Zabbix although
somehow more complex based on the initial observations, it offers a large range of integrations which
might prove useful for certain task. In other ways, Weave Scope seems to be more focused on the
graphical representations of elements (e.g., the topology maps) and it lacks other useful monitoring
capabilities. Prometheus and the EFK stack are typically referred as the most widely adopted choices
for a generic monitoring solution given their extensive list of features, large open-source communities
and the range of integration options with third-party components (e.g., Prometheus exporters16 or
Fluentd datasources17).

Figure 13 illustrates the envisioned implementation of the EFK (Elasticsearch, Fluentd and Kibana) in
CHARITY. Fluentd collects the metrics and send them to Elasticsearch. Elasticsearch can be leveraged
to implement different analysis mechanisms, whereas Kibana can be used to visualize such information
in a graphical interface. Likewise, Kibana can also feed the orchestration tasks by providing alerts.

Figure 13: Implementation of EFK based on Kubernetes, adapted from18.

Similarly, Figure 14 illustrates how Prometheus and Grafana tools fit in the CHARITY project. Different
Prometheus exporters are used to collect metrics from the deployment plane. These metrics, persisted
by the Prometheus server, are meant to be used by the orchestration tasks. Likewise, the AlertManager
Components of Prometheus can be also leveraged as an important input for orchestration tasks.

Figure 14: Implementation of Prometheus and Grafana based on Kubernetes adapted from19.

16 https://prometheus.io/docs/instrumenting/exporters/

17 https://sematext.com/blog/kubernetes-monitoring-tools/

18 https://dytvr9ot2sszz.cloudfront.net/wp-content/uploads/2018/06/kuberbetes-monitoring-arch-1.jpg

19 https://sysdig.com/wp-content/uploads/Blog-Kubernetes-Monitoring-with-Prometheus-4-Architecture-Overview.png

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 48 of 180

Finally, it is important to refer that despite of the advantages of using a generic solution like
Prometheus for persisting and exposing numerous heterogeneous metrics, the choice will actually
depend of the exact metrics that are needed by each orchestration mechanism. Thus, distinct solutions
will be further considered and investigated as part of the overall CHARITY research and development.

4.3 Monitoring Solutions

4.3.1 Cloud Data Monitoring

Crossing the existing tools with the demands of a XR monitoring tool, the heterogeneity is achieved
with Prometheus, an open-source tool that collects metrics from configured endpoints, stores them
as time series and provides a functional query language to select, aggregate and filter data. The default
Prometheus deployment, as shown in Figure 15, also provides its own alerting system to set limits over
monitored metrics and handle alert notifications.

Figure 15: Prometheus architecture (Prometheus.io)

The pull mechanism is another of the strong points of Prometheus, it scrapes data from endpoints and
limits the push mechanism to short-lived jobs that are not always available. In an ecosystem with so
many microservices deployed and in so many places, the tool could become a bottleneck, but pulling
metrics allows backward error traceability against network failures by being able to check them from
the origin.

Figure 16 shows the monitoring architecture of CHARITY, where the multicloud and agnosticity
premises are fulfilled by adding Thanos, a storage Prometheus setup that collects data from the
Prometheus server deployed in each cluster. Thanos collects data from servers outside the cluster
where is deployed by using sidecars, components deployed along with Prometheus that collect data
from the monitoring server and share them with the central data storage.

Prevention and reaction are the most complex objectives to reach in a highly heterogeneous
ecosystem like CHARITY. The adaptative network requires the minimum human involvement given the
difficulty of locating problems in such a complex architecture. For this, a new tool has been added to
convert the static configurations of Prometheus into a dynamic system capable of set new endpoints
to scrape. The so-called Monitoring Manager works with the high-level orchestrator and adapts the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 49 of 180

configuration of the Prometheus servers deployed in each cluster using a template repository to
automatize all the changes in the monitoring system and applying them to the server. The
functionalities of the Monitoring Manager, described in deliverable D3.2, are available through an
HTTP API.

Figure 16: CHARITY monitoring architecture.

Prevention is also granted by Prometheus Alertmanager, that triggers alerts according to the
performance thresholds defined by UC owners in the AMF. Migrating a service susceptible of failure is
the reactive mechanism allows to guarantee XR extreme performance requirements. In CHARITY, this
protection is at two levels: current performance and predicted performance. The first one is triggered
by the current performance of the monitored component, which means that the migration it triggers
aims to correct a certain condition, like exceeding a limit value established by the UC owner. The
second one by forecasting predictions, where the migration does not seek to reverse an existing
situation, rather to prevent it from occurring. The notification types are described in deliverable D3.2.

Grafana is the visualization tool that completes the monitoring framework, given its extensive use in
the open-source community. Grafana allows to use both Thanos and Prometheus as data sources,
provides powerful functions to create dashboards and multiple panels to display data in the most
convenient way for engineers in charge of system observability.

4.3.2 Network and Infrastructure Data Monitoring

The monitoring framework, as illustrated in Figure 17, provides data to the Data Analytics Engine, the
High-Level Orchestrator and the Resource Indexing. The first one requests time series of monitored
data to perform predictions, the other two use monitored and predicted data to take deployment
decisions regarding the resources available. All the data consumed by these components is exposed
by Prometheus exporters.

Since Prometheus is one of the leading monitoring solutions, many third-party systems offer custom
Prometheus exporters along with their tools. Many other exporters have been developed by the large
and proactive community behind Prometheus that enriches the project. These exporters are tools that
collect, process and expose metrics, that are available to Prometheus through an HTTP endpoint. The
configuration with the endpoints to scrape is specified in a ConfigMap, that modify the list of targets
monitored by Prometheus, as shown in Figure 18. The metrics consumed by the previously mentioned
components are extracted from two tools: cAdvisor and Liqo exporter.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 50 of 180

Figure 17: Monitoring framework integration with other components of CHARITY.

Figure 18: List of targets monitored by Prometheus.

cAdvisor, or Container Advisor, is the tool developed by Google to monitor container performance.
The monitoring framework uses the metrics of Table 5 to monitor cluster CPU, memory and storage,
values used to perform predictions and provide the cluster status to the Resource Planning. Regarding
network monitoring metrics, Liqo20, the tool that manages cluster interconectivity, exposes its own
metrics regarding links status, traffic and latency.

Table 5: Prometheus metrics used in CHARITY.

Metric Definition Exporter

machine_cpu_cores Number of logical CPU cores cAdvisor

machine_memory_bytes Amount of memory installed on the machine cAdvisor

20 https://docs.liqo.io/en/stable/usage/prometheus-metrics.html

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 51 of 180

container_memory_working_set_bytes Current working set in bytes cAdvisor

container_cpu_usage_seconds_total Cumulative cpu time consumed in seconds cAdvisor

container_fs_usage_bytes Number of bytes that are consumed by the
container on this filesystem

cAdvisor

container_fs_limit_bytes Number of bytes that can be consumed by the
container on this filesystem

cAdvisor

liqo_peer_is_connected boolean keeping the status of the network
interconnection between clusters

Liqo

liqo_peer_latency_us the round-trip (RTT) latency between the local
cluster and a remote cluster

Liqo

liqo_peer_transmit_bytes_total the total number of bytes transmitted to a
remote cluster.

Liqo

liqo_peer_receive_bytes_total the total number of bytes received from a
remote cluster

Liqo

4.3.3 XR Service Monitoring

The infrastructure metrics described in the previous section do not require UC involvement to perform
monitoring, the observability is over the containers that are part of the application architecture.
However, security restrictions to guarantee the integrity of the data managed and user privacy limit to
the edge the components that can be monitored by Prometheus. To monitor final user devices is
necessary to add an intermediated trusted proxy that collects and expose data.

The metrics that involve XR devices are treated as custom metrics. The strategy is the same as in
Prometheus exporters: collect data, convert it to Prometheus readable format and expose it through
an endpoint within the UC cluster. This additional metrics are configured as infrastructure ones
through the AMF, including the HTTP endpoint.

4.3.4 Aggregated Monitoring

CHARITY and its monitoring framework spreads across clouds, datacenters and clusters, offering to
UCs the possibility to migrate its services between them to maintain the defined performance values.
Therefore, an application deployed in CHARITY isn’t restricted to a certain cluster, it can go through
different cluster during its lifecycle.

The Monitoring Manager component adds dynamism to Prometheus, but data gathered by the
monitoring server is still limited to the cluster where is deployed. To solve this, Improbable21 created
Thanos22, an open-source tool that gathers data from different Prometheus servers. Thanos extends
Prometheus storage capacity, but also implements its query language to retrieve data. Consequently,
the data returned when querying a certain metric show compatible results in the different clusters
that make up CHARITY.

Aggregating monitoring data with Thanos allows us to follow the performance of a service through the
different clusters to which it migrates, as shown in Figure 19. This is key to the forecasting algorithms,
which receive reliable information that represents the fluctuation the metric has undergone so the
prediction results are accurate.

21 https://www.improbable.io/

22 https://thanos.io

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 52 of 180

Figure 19: Example time series returned querying Thanos about a migrated service.

4.4 Forecasting Algorithms

4.4.1 Computation Utilization Forecasting

The efficiency of managing and orchestrating Edge & Cloud resources can be greatly enhanced by
accurately predicting their perspective time-evolving resource utilization metrics. According to
scientific literature, some metrics that can be employed in the prediction process are CPU, RAM,
bandwidth and disk I/O. By implementing a predictive approach in regards to management and
orchestration, it is possible to dynamically allocate cloud resources in a manner which is efficient in
terms of resource utilization and is compliant with the constraints imposed by Service Level
Agreements (SLAs).

The performance of applications is closely intertwined with the resources that they run on. Thus, it is
of paramount importance for computational resources to operate within a specific range. This range
is formulated in a manner which prevents resource under-utilization and over-utilization. In order to
guarantee that resource utilization shall be kept in this specific range, it is possible to allocate
additional computational resources in case of over-utilization or to deallocate some resources in case
of under-utilization. This process is referred to as Horizontal scaling. In many cases, the process of
deploying a virtual machine requires time in the order of several seconds which may make a reactive
approach rather inefficient in terms of properly handling sudden bursts in resource usage. Fortunately,
the use of predictive mechanisms solves this issue by providing predictions regarding the utilization
that is expected to take place during the specific time-frame. These predictions are then leveraged in
order to conduct proactive scaling. Another prominent functionality that benefits from utilizing a
resource utilization prediction mechanism is task offloading. Task offloading is the process of choosing
which computational resources shall handle specific tasks. By doing so, the overall workload can be
distributed across the various resources in a manner which guarantees better response time. The
selection process is based on the requirements of the tasks and the processing capabilities of the
resources.

There have been numerous approaches in regards to how to properly predict resource utilization [9].
Some of these frameworks are based on the use of ARIMA models, such as the ARIMA-DEC [10]. which
is VM provisioning technique based on load prediction. In [11], a proactive approach is proposed to
cope with the dynamic resource provisioning which requires the use of the ARIMA model in order to
perform predictions. Another approach is the use of recurrence-based neural networks such as the
LSTM networks. In [12], an LSTM-based model is used in order to predict future CPU utilization.
Furthermore, in [13], unidirectional and bidirectional multivariate LSTMs were used in order to
forecast resource usage in Cloud datacenters. Contrary to these approaches examined thus far, there
is also the choice of leveraging multi-step forecasting. In [14], an Encoder-Decoder network (GRUED)
is used in order to perform sequence to sequence modelling. GRUED uses two Gated Recurrent Unit
(GRU) networks which operate as a pair of GRU Encoder and GRU Decoder.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 53 of 180

Computation Utilization Prediction can provide substantial benefits in terms of guaranteeing reduced
latency and advanced fault tolerance. Violos et al. [15] showcases how Deep Learning (DL)-based
Computation Utilization Prediction can be leveraged in the context of Horizontal Autoscaling in order
to provide reduced latency. Figure 20 shows the architecture of the proposed double tower neural
network.

Figure 20: Architecture of the proposed Double Tower Neural Network [15].

The composite DL network is designed to satisfy the particularities of the Edge infrastructure and the
resource usage metrics. Since resource metrics like CPU, RAM, disk, and bandwidth have sequential
dependence, Recurrent Neural Network (RNN) can provide an appropriate type of neural layers. RNN
combines the advantages of DL with the characteristics of time-series forecasting. There are different
types of RNN architectures and the two most prominent are the GRU and LSTM approaches. Each
individual processing node is examined separately for future resource usage. However, in order to
trigger the node replication, the DL model of each node should be aware of its own status and the
whole Edge infrastructure status. The Edge node which is examined is also called local and the whole
Edge infrastructure is called global. Because the local and the global status affect each other we
propose the use of a composite DL model that combines the two in order to provide the local resource
utilization predictions. Details regarding the specifics of the proposed model can be found in [15].

In order to support these claims with regards to the efficiency of the proposed model, we performed
a large-scale experimental evaluation in a simulated edge computing environment with CloudSim Plus.
The simulation lasted one week and more than 1,500,000 tasks were generated and offloaded onto
the edge processing nodes. The tasks were generated by a mixture of Gaussian probability distributions
for the workload to simulate the working behaviour of employees who have peak of application
requests at 11:00 am in the morning. The simulation begins with five running processing nodes and
there are 15 more backup nodes for potential replication.

When a resource over-utilization is predicted, the scale up takes place proactively in order to keep the
QoS in an acceptable range. We set the predictions of the proposed model to have a time frame of 10
minutes. In our experiments we compared the Reactive Horizontal Scaling Mechanism, the Kubernetes
Horizontal Pod Autoscaller and the proposed IHPA. Hereunder and for the sake of brevity, we will call
the first two as Reactive and Kubernetes. The experiments took place offloading the tasks with the
MinMin, MaxMin and the RoundRobin (RR) task scheduling algorithms.

In the experimental evaluation, we see the accuracy of the double tower deep learning model, in terms
of error metrics, compared with other baseline and state of the art prediction models. Next, we see
the concrete outcomes of the proposed method in terms of Edge computing performance metrics i.e.,
execution time, throughput and the number of active resources per hour. We compare these
outcomes with the reactive and the Kubernetes autoscaling methods for the three task offloading
mechanisms.

The error metrics we use are the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE).
The MAE expresses the average absolute difference between the target values and the predicted
values. Squaring the prediction errors and averaging the squares we have the RMSE. RMSE expresses

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 54 of 180

the standard deviation of the errors emphasizing on the spread out of the errors. MAE is preferred
when all the errors have the same importance, while RMSE is prioritized when we should penalize the
large errors even if they are just a few.

The execution time has been evaluated through different statistical measurements. Average Execution
time (Avg. Ex. time) declares the mean time for all the tasks of the experiment. Median Ex. time refers
to the middle values. Standard deviation declares how much the execution times of the tasks differ
from the average value. Two additional statistical measures are the skewness and kurtosis. Skewness
indicates the symmetry of the values in execution time and a right-skewed distribution is better than
a left one. Kurtosis indicates if the distribution of the time values is heavy-tailed or light-tailed. An
additional evaluation metric is the tail latency. Tail latency is the 98th percentile and represents the
2% longest response times in the system. It is an important metric because these longest responses
affect in a significant way the SLAs and the QoS. Throughput declares the average number of tasks
completed per second for all the processing edge nodes. Active VMs per hour refers to the number of
VMs that are active and running per hour. This metrics is closely intertwined with the pricing that is
charged by the infrastructure providers.

The Reactive Autoscaling mechanism decides every 60 seconds whether the network should allocate
additional nodes, release some running nodes or continue with the same topology. The decision is
being made reactively and independently of each node and is based on its average CPU utilization
recorded during the last minute. The main objective is to ensure that each processing node operates
in 40%-70% capacity in order to avoid under-provisioning and over-provisioning. If the current CPU
utilization exceeds the 70% upper threshold the scaling mechanism in CloudSim Plus decides to
allocate additional nodes. If the predicted value is below 40%, the scaling mechanism decides to
release the under-utilization nodes after its running tasks have been completed. Because the scaling
decisions take place after the resource metrics exceed the threshold, there will be a significant delay
in the instantiation of the new nodes. As we will see in the next subsection, these delays regarding the
deployment and startup time of the node will also affect the tasks execution times.

Each pod is a representation of a single instance of a running process in the Edge infrastructure and
runs at least one container. In the CloudSim Plus experiments with the Kubernetes autoscaling
mechanism, each pod was designed to contain a single container in order to facilitate a computational
paradigm similar to the one used in the Reactive Horizontal Scaling Mechanism. By doing so there is a
direct analogy formed between pods and network hosts with containers and VMs respectively. Firstly,
the incorporation of the Intelligent Scaling Mechanism in the experiments requires the additional
integration of the DL prediction model in CloudSim Plus. Next, in the same way with the previous
autoscalers, once every 60 seconds information regarding each node is gathered. In addition, for each
node the last 20 sampling metrics are stored in order to form the time-series of the local nodes. These
sampling metrics are multivariate and include the following six features: VM ID, timestamp, CPU, RAM,
Bandwidth utilization and the number of processed tasks that correspond to the last minute.

In the context of the experiments there are 20 local representation vectors, each one corresponding
to a different node. By aggregating their values, we create the unique global representation vector.
The global representation vector describes the Edge infrastructure in a single timestamp and consists
of the metrics of all local nodes. Thus, once every 60 seconds, 20 local representation vectors and a
single global representation vector are created. All the representation vectors bear the same
dimensions (6*1). This fact allows the concatenation of each one of the local representation vectors
with the global. The result is the creation of 20 hybrid representation vectors that are later used as
input for the proposed model. The proposed produces 20 distinct predictions, each one describing the
expected CPU utilization for its corresponding node. Similarly, to the scaling mechanisms described
before, the Intelligent autoscaler also keeps the CPU utilization in the 40%-70% zone. The fundamental
difference is that the Intelligent Scaling Mechanism utilizes the predicted values of CPU to make
proactively the scaling decisions instead of the Reactive and Kubernetes autoscalers that utilize the
current CPU metrics.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 55 of 180

We make a comparison of the proposed Intelligent Proactive Autoscaling against the Reactive and the
Kubernetes approach with different versions of the execution time, throughput and number of
resources. The outcomes are summarized in Table 6.

Table 6: Experimental results of the proposed Intelligent Autoscaling method [15].

The Double Tower DL model that runs in the Intelligent Autoscaler excels at speeding up all tasks in
general, something that can be seen at the results of the Average Execution Time. The improvement
in the execution time means that tasks complete faster in general, regardless of their computational
needs. Moreover, the significantly lower standard deviation shows that the Intelligent Autoscaler
provides consistency in the execution time, reinforcing our claim of fewer outliers of delayed tasks.
This adds predictability to our system and enhances our abilities of being in control of the resources.
The tail latency metric also highlights the IHPA’s efficiency, as it was improved by a factor of 500-3600%
depending on the task offloading algorithm. That implies a vast improvement on the computationally
heavier tasks, which can really affect user experience. This claim can be also supported further by
evaluating the maximum Execution Time of the methods tested, where the proposed method exhibits
similar results. By dropping said metric to at least roughly half of the Reactive/Kubernetes values, one
can safely assume that the proposed method handles the available resources in a way which ensures
maximum availability for longer tasks. There would be no point in examining the results in regards to
throughput in the context of the entirety of the simulation, since all tasks would have eventually been
completed successfully by the end of it. So, we chose to examine the throughput that is achieved when
the sudden bursts in task production take place. More specifically, the throughput metric corresponds
to the number of tasks completed during the three minutes time-slots when the ten most sudden and
violent bursts in task production took place. As one can see in Table 6, the proposed algorithm
managed to greatly improve this specific type of Throughput (Tput). It is worth mentioning that the
results which correspond to the Round Robbin Reactive mechanism and the MaxMin Reactive
mechanism are indicative of their inability to handle sudden bursts in task production, during which
the use of these Horizontal Scaling mechanisms led to extended system failures. Our proposed model,
on the other hand, managed to not only ensure that the task processing operations will remain
unaffected by changes in the rate of task production, but to also enable these operations to be
conducted in an optimal manner. In addition to the above, Table 6 provides metrics such as skewness
and kurtosis. Skewness shows us that the main part of the execution time distribution values resides
on the left part, which translates to lower execution times, whereas kurtosis implies that those values
are concentrated on the smaller central part of the distribution, resulting in a steeper “bell”.
Ultimately, these metrics inform us that the tasks are completed faster, and at a relatively steadier
pace. We can arrive at this same conclusion by using the average value and the standard deviation of
execution time as well. The average number of VMs that were used during the entirety of the
simulations remained relatively the same across all the Horizontal Scaling Mechanisms that we
examined, with a slight deviation of about 5% of the total number of VMs per hour. Even if the
Intelligent method is slightly resource heavier than the reactive and Kubernetes ones due to the
proactive autoscaling, we see that it elastically scales down fast enough once it understands that there
are resources that might go unused in the immediate future.

In regards to Computation Utilization Prediction being able to provide advanced Fault Tolerance
capabilities, we produced the “Intelligent Proactive Fault Tolerance at the Edge through Resource
Usage Prediction”. The composite DL network is proposed to provide accurate resource utilization
predictions for the Intelligent Proactive Fault Tolerance (IPFT) method.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 56 of 180

The composite DL model was integrated in an Edge simulation of CloudSim Plus. We simulated an Edge
infrastructure that consists of a set of nodes, 5 available to us by default, and another 15 that can be
activated for intelligent replication when needed. We simulated the local and global resource
monitoring process, measuring CPU, RAM and bandwidth values, and saving those values every 60
seconds (time-step). The task offloader of the infrastructure was receiving incoming traffic and was
assigning each task on a node, based on the following scheduling algorithms: RoundRobin, MinMin,
and MaxMin.

The local and global resource usage metrics are being monitored and then fed to the IPFT mechanisms
of each processing node. During every single time-step we use the monitoring data in order to
formulate the appropriate data representations, featuring the past time-series measurements of a
single node, as well as the state of the infrastructure as a whole. The input is then fed to the composite
DL model, enabling it to make predictions of resource usage for every node in a time horizon of 10
minutes. In this experimental set up we made the assumption that the preparation time for the
infrastructure to assure its availability and robustness to faults is 10 minutes.

The simulation lasted for seven days and the tasks were generated by a mixture of Gaussian probability
distributions that simulate a realistic application workload behaviour. The processing nodes simulated
the processing capabilities of Raspberry Pis. We defined a process fault if the time execution of a task
lasts more than one second. The selection of one second is a reasonably acceptable latency for several
data analytic applications. Trying different latency times for the process faults, we noticed that the
IPFT performance was in a similar way better than the reactive approach. In the reactive Fault
Tolerance approach, a node replication is triggered in case of a fault is taking place. In Table 7, as we
will thoroughly discuss in the next section, we compare the IPFT mechanism to the reactive FT
approach.

In order to evaluate the performance of the IPFT mechanisms, we used a set of fault tolerance
evaluation metrics. Mean Time To Failure (MTTF) is defined as the expected time to failure given that
the system functions properly. MTTF is an evaluation metric which corresponds to the overall inability
of the Edge infrastructure to operate properly and thus, it is calculated by taking into consideration
the number of faults regardless of the actual processing node that failed. Mean Time To Repair (MTTR)
is defined as the expected time required to repair the system after a failure occurs. For the MTTF the
higher values are the better and for MTTR the lower values are the better. These evaluation metrics
are calculated in terms of seconds.

Two additional Fault Tolerance evaluation metrics are the Reliability and Maintainability. Reliability
refers to the ability of an Edge infrastructure to run continuously without any failure. Maintainability
refers to how easily a failed system can be repaired. Both Reliability and Maintainability are numbers
with no units and higher values mean better performance.

Table 7: Experimental results of the proposed IPFT.

The experimental results are summarized in Table 7. We compared the IPFT mechanism to the Reactive
Fault Tolerance (RFT) approach. The RFT approach performs node replications after a fault occurs.
Regarding the task offloading algorithm we used the Round Robin (RR), the MinMin and MaxMin. The
experimental result shows the superiority of IPFT compared to the RFT in all evaluation metrics. In
addition, we see that the outcomes are significantly affected from the task offloading mechanism. This
happens because the task offloading algorithms also integrate a workload balancing methodology with
different criteria as we discuss in the following paragraphs.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 57 of 180

In Table 7, we can see that in RR, MaxMin and MinMin the MTTF in IPFT has been increased compared
to the RFT. This means that leveraging the resource usage predictions, faults occur more sparsely and
rarely. We can see from the MTTR metric that in the event of a fault, the infrastructure will recover
very quickly, scheduling the new tasks in processing nodes with low resource utilization. The reliability
metric shows that by using the IPFT, the Edge infrastructure can provide the expected results up to
93% of the simulation length, even during the stressing time periods of the simulated days. The
significant improvement noticed for the Maintainability metric, declares that even if a fault occurs, the
IPFT will increase the robustness of the Edge infrastructure. In other words, the IPFT will take timely
the right measures by triggering node replication and task migration, in order to reduce the likelihood
of subsequent fault occurrence.

A fault is recorded taking into consideration all the Edge nodes that are currently active. This means
that the MTTF value of 13.309 seconds in IPFT MaxMin includes the faults of different Edge nodes. In
addition to that, some generated tasks had a large number of million instructions that would have
provoked a fault because of the CPU unavailability in the processing nodes. In this case, we wanted to
know how these tasks affect the MTTF and MTTR. From the analysis of the results, we saw that the
variance of the task size is the reason that we see that the three different task offloading mechanism
have different performance. In particular, the MaxMin algorithm gives higher priority in big tasks, thus
we see a significantly better MTTF metric.

During the simulation we examined the IPFT decisions and how the Edge environment operates. The
simulation confirmed that the infrastructure takes advantage of the timely decision to trigger proactive
actions, such as intelligent node replication and task migration before the number of tasks overwhelms
the processing nodes. This can be particularly important for the infrastructure provider as it can save
cost and energy, by shutting down nodes when they are no longer needed. Additionally, the provider
can achieve a smoother flow of on-time completed tasks, avoiding crashes and minimizing QoS
deterioration.

While the aforementioned solutions provided exceptional results in terms of forecasting within the
frame of single resource consumption metric at a time, when the need to conduct predictions that
involve multiple metrics, they presented certain limitations. Towards tackling these limitations,
members of the CHARITY project investigated the use of novel Deep Learning Encoder - Decoder
architectures that are based on Graph Neural Networks. One of these architectures (GCN-LSTM ED) is
showcase in Figure 21. The showcased forecasting model architecture is capable of providing multi-
step multi-variate forecasting regarding CPU, Memory, and Network metrics. More details regarding
the proposed architecture can be referred to [16].

Figure 21: Architecture of the proposed GCN-LSTM.

Figure 22 showcases the experimental results that examine the forecasting efficiency of the proposed
solution. As one can see, the proposed solution (GCN-LSTM ED) managed to outperform its
competitors in terms of multi-variate multi-step forecasting.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 58 of 180

Figure 22: Experimental Results of the proposed GCN-LSTM (prediction accuracy).

Furthermore, we examined the efficiency of the proposed solution within the frame of a simulation
for proactive horizontal autoscaling using the aforementioned CloudSim Plus framework. The settings
of the experiments were similar to the ones that were previously explored. The corresponding
experimental results are showcased in Figure 23. As one can see the proactive intelligent approach
that leverages the proposed GCN-LSTM ED manages to outperform the standard reactive approach.

Figure 23: Experimental Results of the proposed GCN-LSTM (horizontal autoscaling).

4.4.2 Network State Forecasting

Network state prediction is vital for optimally managing the computational, storage and network
resources that the various services run on. The network state corresponds to the amount of network
traffic in relation to the various nodes. The term of traffic in the context of Edge and Cloud computing
has two different interpretations. The first one refers to the amount of data which is traversing the
network infrastructure. The second one refers to the amount of user requests / sessions conducted.
The metadata corresponding to both traffic interpretations can be collected in the transport layer of
the Transmission Control Protocol/Internet Protocol (TCP/IP) suite by using a traceroute network
diagnostic tool.

The service traffic prediction has a long history dating back to the 1990s. For many years, different
methods have been used for modelling and forecasting the service traffic. In the beginning, point
process statistical models like Poisson processes were used but they presented the limitation that they
do not capture the self-similarity characteristic [17] of the sequence values. Afterwards, time-series
models such as Autoregressive-Moving-Average (ARMA) and their variations Autoregressive
Integrated Moving Average (ARIMA) and Seasonal ARIMA (SARIMA) [18] were used for traffic
prediction and managed to minimize the operation cost taking into account two types of cost: i) the
cloud resource costs which occur when non-essential resource provisioning is performed due to traffic
overestimation and ii) the QoS degradation cost which occurs when the traffic is underestimated,
resulting to fewer resources than actually needed being allocated and thus jeopardizing the
satisfaction of the users of the data services.

With the advent of Deep Learning, many decision-making models after being experimentally compared
and redesigned, were ultimately replaced by Artificial Neural Network (ANN). The first studies showed
that ARIMA performs better than simple feed-forward ANN [19]. The reason is that simple feed-
forward ANN approaches are not designed for sequential tasks. They allow information to travel one
way and cannot capture the periodic and autocorrelation patterns that characterize network traffic.
Recurrent Neural Networks (RNNs) are a different class of ANN that models temporal sequencing of
data so that each observation is dependent on the previous ones running in both directions by loops
in their network. Information derived from earlier input is fed back into the network providing a kind

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 59 of 180

of memory of the previous observation sequences in order to predict the next one. Complex RNN
models that leverage interactive and temporal behaviour of data centres have been used successfully
for single-service traffic prediction and interactive network traffic prediction [20].

Many data transfer, storage and processing services include short- and long-range time dependencies,
making the multi-step prediction a prominent solution [21]. Multi-step prediction using RNN with
iterated prediction over many time steps has been applied for IoT traffic time-series prediction [22].
This approach is based on the assumption that for each prediction step, the output of the RNN is
merged with the newer input in order to make the next step prediction. The limitation is that this
feedback approach is not directly designed for sequence prediction and as a result tends to
accumulates errors over steps. Contemporary cloud resource management mechanisms can provide
resource allocation policies by leveraging multi-step traffic prediction.

A sequence to sequence (seq2seq) architecture can capture the temporal dependencies and provide
predictions for different time steps. A prominent approach for seq2seq is the encoder-decoder which
consists of one neural network that maps the input sequence of previous steps to an intermediate
vector and the decoder which maps the intermediate vector to a sequence prediction. Encoder-
decoders have been used in multiple fields for multi-step prediction but up until now they had not
been used in service traffic prediction. Figure 24 illustrates a contemporary service chain scenario. The
traffic monitoring tool provides the current traffic values to the encoder-decoder, which then outputs
the traffic prediction sequence. The traffic prediction sequence is being leveraged by the Intelligent
Network Function Resource Allocation to provide the necessary resources on the fly, thus keeping the
fulfilment of QoS requirements at acceptable levels. The Intelligent Network Function Resource
Allocation mechanism performs horizontal or vertical scaling, by dynamically allocating resources to
keep up with the data-flows of the next time periods.

Figure 24: Leveraging Service Traffic Prediction for Horizontal Scaling of Network Functions [23][23].

CHARITY aims to leverage the Encoder-Decoder paradigm in order to establish robust multi-step traffic
prediction mechanisms. What makes encoder-decoder models an ideal candidate for sequence-to-
sequence prediction is their inherent ability to map sequences of different lengths to each other. This
functionality is the result of the model’s architecture. The encoder takes the input sequence and
represents the information as latent variables. The decoder is set to the final states of the encoder and
is trained to generate the output based on the information gathered by the encoder.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 60 of 180

Furthermore, CHARITY shall introduce a novel Hybrid architectural paradigm which is the result of
using both of bidirectional and unidirectional LSTMs instead of just one of the two. The input layer is a
bidirectional LSTM. A unidirectional LSTM layer is then stacked on top of the bidirectional one. The
bidirectional layer will provide one hidden state output for each time-step in 3-dimensional form which
is then used as input by the unidirectional layer. The core idea behind this architectural choice is the
fact that by introducing heterogeneous layers the model will be able to exploit the temporal
correlations present in the various time-series in a more sophisticated way when compared to the rest
of the models. Furthermore, the fact that multiple layers are being used allows the features of the
input sequence to be represented in a more robust way. The same design logic is implemented in the
decoder part in order to mirror the encoder morphology. Instead of the basic LSTM model used in the
previously explored decoders, the Hybrid model uses a bidirectional layer stacked on top of a
unidirectional layer. This structural symmetry enables the decoder to properly reconstruct the
underlying temporal motifs of the input sequence.

In order to evaluate the accuracy of the proposed model we used error metrics and time metric. The
error metrics are the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE). The MAE
expresses the average absolute difference between the target values and the predicted values.
Squaring the prediction errors and averaging the squares we have the RMSE which expresses the
standard deviation of the errors emphasizing on the spread out of the errors. MAE is preferred when
all the errors have the same importance, while RMSE is preferred when we should penalize the large
errors even if they are just a few. In our experiments, the amount of transmitted data was in terms of
megabytes and the duration of the services was in seconds. In Table 8, Table 9, and Table 10, we
evaluated each forecasted time step independently in order to see the models prediction skill at each
specific time-step and to contrast models based on their accuracy at different time-steps.

Table 8: Request number [23].

Table 9: Transmitted data [23].

Table 10: Session duration [23].

Extended information regarding the architecture of the Hybrid Encoder-Decoder and the overall
experimental evaluation process can be found in [23]. The fact that the Hybrid model utilizes a greater
number of layers allows it to better encapsulate the signal’s characteristics when compared to the
other models. This effect is amplified by the fact that the Hybrid model consists of heterogeneous
layers (bidirectional and unidirectional) which allows the encapsulation of temporal motifs in a more
robust manner. This claim is supported by the fact that the Hybrid model produces the best RMSE
scores in regards to traffic and number of requests. On the other hand, the best MAE scores in regards

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 61 of 180

to traffic and number of requests were produced by various LSTM-based models whose simpler and
more shallow architecture enabled them to tune into the fundamental oscillation of the time-series.
Yet, the Hybrid model was able to follow the signal more accurately by being able to produce
predictions closer to the actual values.

Similar to resource usage predictions that were previously explored, while the previously mentioned
solutions yielded impressive results in forecasting in the frame of a singular service, they encountered
limitations when extending predictions to involve multiple services. In addressing these challenges,
researchers involved in the CHARITY project explored the utilization of innovative Deep Learning
Encoder-Decoder architectures grounded in Graph Neural Networks. Figure 25 showcases one such
architecture, known as GCN-LSTM ED. This highlighted forecasting model architecture demonstrates
the capability to forecast service demand that corresponds to multiple services. Further insights into
the proposed architecture can be found in the respective journal publication.

Figure 26 showcases the experimental results that examine the forecasting efficiency of the proposed
solution. As one can see, the proposed solution (GCN-LSTM ED) managed to outperform its
competitors in terms of multi-service multi-step forecasting.

Figure 25: Architecture of the proposed GCN-LSTM.

Figure 26: Experimental Results of the proposed GCN-LSTM (prediction accuracy).

4.4.3 SLA Violation Forecasting

Crucial to ensuring the agreed service standards are Service Level Agreements (SLAs), which delineate
the metrics against which service is measured, as well as the corrective measures or sanctions in case
the agreed service levels are not achieved. The SLAs constitute the key documents between the service
provider and the consumer, clarifying the quality and terms of the services agreed between the two
parties for a specific time period. SLAs serve as regulatory procedures, establishing trust between the
parties involved and specifying various guarantees that providers are required to offer to their
customers. The agreements may encompass a wide range of Quality of Service (QoS) metrics that the
provider aims to guarantee, including response time, throughput, availability, mean time between
failures, or energy consumption, among others. In many cases, multiple of these QoS metrics are
combined to form Service Level Objectives (SLOs). Additionally, SLAs detail corresponding service
pricing and the penalties imposed in cases where providers are unable to offer the agreed-upon QoS.
Furthermore, SLAs cover aspects such as service guarantee time period, credit, exclusions, and

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 62 of 180

granularity, with the latter referring to the resource scale specified in the service guarantee, which
may correspond to data centre, service, instance, or transaction level.

Figure 27: Architecture of the proposed Composite Model [24].

For service providers, minimizing instances of SLA violations is vital to enhancing customer satisfaction,
avoiding financial penalties, and preserving their reputation. To prevent service violations and their
consequences, service providers must establish mechanisms for monitoring and predicting QoS
parameters. In cases of severe indications of violations, they must take immediate and effective
measures to prevent them. Therefore, effective prediction methods are necessary for service providers
to anticipate potential violations before they occur, enabling proactive countermeasures. Various
prediction techniques are employed for predicting SLA violations, specifically for forecasting QoS
parameters in future time intervals. However, the configuration of each technique varies based on
several aspects, such as the choice of the prediction method, input formulation, and data patterns.

Figure 28: Required input preprocessing and formulation.

We explored various methods for predicting SLA violations occurring during the service provisioning
between cloud customers and providers. While there are numerous network metrics pertaining to
server-client interactions, the effective utilization of these metrics by an SLA prediction mechanism
remains an open research question. We investigate three distinct data representation models for
network characteristics: time series, content, and context representations. We find that a context-
based approach utilizing graph representations adeptly captures client associativity, thereby
enhancing the performance of conventional SLA violation prediction models when integrated with
them. Our SLA violation prediction employs neural networks, leading us to propose a composite model
leveraging Graph Neural Networks (GNNs). In our investigation, we place particular emphasis on
constructing graphs in various ways. We conduct a comprehensive performance evaluation of 23 SLA

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 63 of 180

prediction models categorized into three representation types: vector models based on network
features, sequential models exploiting temporal QoS metric evolution, and graph models considering
client associativity.

The architecture of the proposed composite model is displayed in Figure 28. In order to provide the
appropriate input to the proposed composite model it is required to follow the two steps that are
displayed in Figure 28. Experimental results demonstrate that our GNN-based model notably enhances
SLA violation prediction accuracy, rendering it a valuable tool for cloud and service providers. To
conduct the performance comparison, we employ a range of classification and regression evaluation
metrics. These diverse evaluation metrics enable us to delve into the specific strengths and weaknesses
of each model. The SLA violation prediction mechanism endeavours to categorize the testing instances
into four categories: Extremely Safe, Safe, Low Risk, and High Risk, based on the feature vectors.
Therefore, we utilize Accuracy, Precision, Recall, and F1-score metrics. Additionally, to assess QoS
metrics such as response time, we utilize Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), which are well-suited for continuous numerical data. It is noteworthy that these QoS metrics
often serve as the focal parameters in SLA modelling and prediction efforts. For instance, Figure 29
displays the experimental results that correspond to Precision. Figure 30 display the F1-scores that
derived from the experimental evaluation process.

Figure 29: Experimental Results of the proposed Composite Model (precision).

Figure 30: Experimental Results of the proposed Composite Model (F1-score).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 64 of 180

4.4.4 Optimal Image Placement Prediction

The rise of data-intensive and latency-sensitive applications, known as NextGen applications, is a
significant driver behind the expansion of Edge Computing. Edge computing promises to extend utility
computing to applications that were not fully accommodated by the Cloud computing revolution. It
achieves this by enabling the deployment of applications in proximity to users and data sources,
addressing concerns such as latency, battery life, bandwidth costs, security, and privacy. These
applications typically adopt a microservice architecture, comprising independently deployable and
loosely coupled services. This architecture supports on-demand and dynamic behaviour to facilitate
data and user movement. Consequently, microservices must be activated only when a specific number
of users access them from the vicinity of a particular edge resource. As a result, edge devices are
required to run multiple microservices over time, necessitating access to sets of
VNF/application/microservice images (regardless of their nature, e.g., containers, Unikernels, etc.) to
instantiate applications proactively. Providing access to these images poses several challenges,
including limiting transfer time to align with the dynamic behaviour of the application, minimizing
bandwidth costs for image downloads, and accommodating potentially limited storage capacities of
edge resources. These challenges are compounded in scenarios with a high number of edge devices.

Therefore, centralized image repository download may not always be feasible due to potential
bandwidth costs and transfer time constraints. We advocate for a distributed approach where images
are replicated across a subset of edge resources. Specifically, we propose an approach that divides
edge resources into distinct groups and assigns an image to each group. The objective is to balance
storage usage with the latency induced by image transfer. Ideally, these edge groups should be
determined (and sized) automatically based on actual resource availability and application instance
requirements (e.g., size, latency requirements, etc.).

To achieve this, we model image placement as a Minimum Vertex Cover (MVC) problem [25] on the
network connecting the Edge nodes. Subsequently, we introduce GNOSIS, a learning approach that
combines Graph Neural Networks and Deep Reinforcement Learning. GNOSIS leverages the
representation capabilities of Graph Neural Networks (GNNs) along with the strength of actor-critic
Reinforcement Learning to provide robust solutions. We extensively evaluate GNOSIS across various
network topologies and sizes, comparing it against a greedy approach considered state-of-the-art.
While the Greedy algorithm demonstrates superior speed across all network configurations, GNOSIS
outperforms it in terms of vertex cover quality for random and small-world networks, albeit falling
behind for preferential attachment networks.

Figure 31 displays the execution times (GNOSIS vs Greedy approach) in the context of various network
topologies, across various number of vertices. Figure 32 displays the cost function (GNOSIS vs Greedy
approach) in the context of various network topologies, across various number of vertices.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 65 of 180

Figure 31: Experimental Results of the proposed GNOSIS (execution time).

Figure 32: Experimental Results of the proposed GNOSIS (cost function).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 66 of 180

4.4.5 Mobility Prediction

Mobility forecasting is of paramount importance in the context of optimally orchestrating edge
resources. Regional traffic forecasting presents a burgeoning challenge within the realm of urban
mobility, holding significance across various domains including smart cities, Internet of Things, edge
computing, wireless networks, and more. It involves predicting future traffic conditions across diverse
geographic areas, characterized by grid-based or non-uniform partitioning, and spanning multiple time
periods, ranging from minutes to hours. Dedicated forecasting models are utilized for this purpose.

Despite its numerous advantageous applications, regional traffic forecasting is a complex endeavour.
It necessitates accurate predictions of traffic conditions across different areas over extended time
periods, owing to the intricate and interlinked nature of traffic systems, which exhibit both spatial and
temporal characteristics. Spatially, traffic conditions in one region can be influenced by events
occurring in neighbouring or distant areas, necessitating an understanding of the spatial dependencies
between regions. Temporally, traffic patterns undergo dynamic changes influenced by time cycles of
varying lengths, requiring models to capture both short-term fluctuations and long-term trends.

Hence, constructing regional traffic forecasting models requires incorporating information regarding
the topology of various regions and the populations traversing them. Technologies such as advanced
traffic sensor networks and integrated geographic information systems facilitate the availability of
such information by continuously monitoring, documenting, and archiving spatial and temporal data
across multiple instances. By combining advanced modelling techniques, real-time data streams, and
domain-specific knowledge, robust and accurate forecasting systems capable of handling the
intricacies of regional traffic can be developed.

In recent years, spatio-temporal graph neural networks, like GCN-LSTM, have demonstrated state-of-
the-art performance in various traffic forecasting problems, primarily due to their ability to effectively
incorporate contextual information. However, only a small portion of these endeavors focuses on
regional traffic forecasting. Additionally, the use of spatio-temporal graph neural networks for regional
traffic forecasting has been limited, with prior attempts typically focusing on capturing either the
spatial or temporal aspects of the problem.

Members of the CHARITY project have managed to enhance the GCN-LSTM architecture to enable the
integration of information pertaining to diverse populations (temporal aspect) and the regions they
traverse (spatial aspect). This enhancement aims to develop more precise and refined prediction
models by effectively fusing and distilling information. The outcome of this research effort is a novel
spatio-temporal graph neural network architecture called WEST (WEighted STacked) GCN-LSTM.
Moreover, the integration of the aforementioned information is accomplished through the utilization
of two innovative algorithms known as the Shared Borders Policy and the Adjustable Hops Policy. The
proposed solution is showcased in Figure 33.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 67 of 180

Figure 33: Architecture of the proposed solution.

Through an extensive experimental evaluation process, the ability of the proposed solution to
significantly surpass its competitors was established. Figure 34 displays some of the experimental
results that derived on the basis of a large scale simulation. The conducted simulation involved the
divide of Central Park into 6 distinct regions. The showcased results are indicative of the fact that the
proposed solution managed to outperform its competitors in terms of predicting the number of people
in each one of these 6 regions across numerous time-steps. More details regarding the architecture of
the proposed solution, as well as the specifics of the experimental settings can be referred to at [26].

Figure 34: Experimental Results of the proposed solution.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 68 of 180

4.5 Relation to CHARITY

As highlighted several times, CHARITY aims to achieve a platform, inspired by the ETSI Zero-touch
specification, which can be used to reduce the human interaction in the expected complex life-cycle
management of next-generation XR applications. To fulfil such a vision, different orchestration and
management functions will leverage the notion of control closed loops (e.g., MAPE-K loops) as a
structured chain of steps from retrieving environment information up to the decision actuation.
Orchestration and management functions require constant analysis of the managed entities.
Monitoring is the initial step of control closed loops and is essential to track the real-time QoE of XR
applications and to ensure they run as expected. In this vein, this section discussed different
monitoring tools with a brief comparison among them and the monitoring solution with regards to
cloud data, network, and service data/metrics. It then discussed how the obtained monitoring data
can be leveraged for the prediction of computation and network resources, as well as the SLA violation
and mobility feature of mobile XR applications with various effective prediction methods, e.g., AI-
based prediction algorithms, in the scope of the CHARITY framework. As mentioned before, the
realization of more autonomous and intelligent orchestration mechanisms, as envisioned in CHARITY,
highly depends on the inputs provided by such monitoring and prediction components. Hence it
becomes critical to understand how they fit in the proposed architecture and how they can be used as
the inputs for the proposed mechanisms. Together with the intelligent prediction algorithms,
monitoring tools are key elements to automate the network and service management, reduce
detection and decision times and minimize the need for human intervention in the overall service
orchestration.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 69 of 180

5 XR Application Management Framework

The CHARITY project aims to put in place a technological platform which deals with XR applications
(AR, VR and Holography based applications): XR applications are provided with fully integrated edge
computing solutions offering high performance, lower latency, scalability and security. The realization
of this vision is empowered by the most recent technologies and by a new way to rethink standard
models. This journey begins by offering to Next Generation Application Developers (NextGen) a set of
services and tools to be used to speed up release rates, reduce costs, and mitigate risks throughout
the development process. In CHARITY, a DevOps/ Continuous Integration/Continuous Delivery (CI/CD)
concept has been adopted and integrated into an Application Management Framework (AMF), offering
to NextGen developers an environment for rapid design, testing and integration of highly interactive
and collaborative next-generation services. As part of this toolset, NextGen developers will be offered
functions to design and manage, at design time, network slice blueprints.

The AMF framework can be considered an entry point for XR application developers, from which they
shape and manage their XR service: through a portal named Application Management Portal (AMP),
they can start their CHARITY lifecycle. In CHARITY, NextGen developers are the owners of Use Cases
who, through AMP functionalities, will take advantage of the service enablers provided by CHARITY
and will validate the results through their targeted demonstrators. Figure 35 depicts the CHARITY high
level architecture, in which the AMF framework is highlighted.

Interaction with Network Service Orchestrator is implemented in a loosely coupled way: the
mechanisms to communicate inside CHARITY platform is REST APIs.

Figure 35: CHARITY High Level Architecture (as initially envisioned in the description of work).

We outline here the provided functions, distinguishing between CHARITY specific slice blueprint
management and other application composition functions.

Regarding application composition:

• Use cases application registration/onboarding by using available tools for a CI/CD chain
wherever possible.

• Definition of application model (templates describing the different application bricks and their
interconnection).

• Whenever possible, validation of composed applications in a dedicated environment. This
strongly depends on the technological requirements of the applications: in some cases, it may

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 70 of 180

not be possible to set up a validation runtime, e.g., for components requiring dedicated
hardware (e.g., specific GPU models), or high demand in physical resources.

• Management of dynamic changes to the application model.

Registration/onboarding consists in the possibility, for NextGen developer, to upload the application
components, packaged as virtual machine or container images (aka artefacts), in a repository where
they can univocally be registered with an abstract description of the artefact itself (eventually guided
by GUI). A normal input for a CI/CD chain is the source code for which CI is a consistent and automated
way to build, package, and test it: in CHARITY, the input is however expected to be wrapped up in VNF
or CNF images (VMs or containers). After the onboarding process, the artefact is available and tagged
in the artefact repository.

Whenever possible, each described artefact (that will need to be validated internally through unit and
E2E tests before being uploaded into the CHARITY repository) will be validated with tests, possibly
along with native CHARITY components. Validation should be done in a test environment e.g.:

• via single component smoke test run (if provided by NextGen Application Developers)

• if possible in terms of resource requirements, via integration tests provided by NextGen
Application Developers, running with CHARITY components (mocks or full)

• via a security scan

For a registered and validated artefact, the owner can request to deploy, renew the deployment with
a new version, and to decommission the artefact. The same request can be also issued
programmatically by a device, for the use cases that require a more dynamic activation mechanism. In
this case, if the request is triggered by an and-user device (e.g., a customer of an organization providing
the XR Application), it will be mediated by a proxy owned by the same organization, which will present
the request on behalf of the end user with the organization CHARITY authentication credentials. Figure
36 represents the above-mentioned interactions allowed to the XR Developer for the definition and
management of the developed artefacts.

Figure 36: Developers’ Activities.

After the NextGen Application Developer decides to deploy/decommission an artefact, the Application
Management Framework alerts orchestration components that an artefact is ready to be deployed-
renewed/decommissioned. Mechanisms has been developed to pass run-time instance specific
deployment parameters not included in the abstract application model e.g., geo-location parameters.
The interface between AMF and Network Service Orchestrator is e based on REST API calls. Figure 37
depicts the high-level deployment sequence.

In terms of blueprint management, the following functions will be provided:

• Designing - from scratch or via copy - a blueprint as a composition of Network Services, with
WP3 artefacts -as VNF-, virtual links, connection endpoints; the slice blueprint might or not
include also bare metal infrastructure element descriptors as PNFs.

• Registering, modifying, validating and storing abstract blueprints.

NextGen application developers can choose, picking in the AMP GUI, all the needed elements to
compose the desired Network Service but not its actuation: VNFs, Virtual links between elements,

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 71 of 180

specific network service (routing, encoding, streaming…) and also service enabling artefacts provided
by CHARITY platform. Selected abstract objects will be collected and will represent inputs for the
design tools whose outputs will be network slice blueprints. AMF stores such blueprints, see Figure 38,
in a NSL catalogue (XR Service Blueprint Templates Repository) that can be accessed by the
orchestration layer (see Section 3).

Figure 37: Deployment sequence.

Figure 38: AMF and network blueprints.

Blueprints do not contain runtime objects or artefacts; they contain an abstract definition of the
network service: for example, each time a NS Admin request for an encoding service is received, the
specific blueprint template is sent to a “translator” engine that transforms the blueprint capabilities
into a detailed blueprint containing reference to the encoding software version and so on. The detailed
blueprint is represented in a TOSCA compliant format and is then consumed by the Network
Orchestrator. In this sense, the network slice blueprint created by the AMF can be comparable with a
Network Service Descriptor according to the ETSI MANO specification.

The multi-cloud perspective adds degrees of complexity since it is not feasible to use the basic
Prometheus visualization and alerting tools. The CHARITY project contemplates a dispersed
architecture between different cloud domains for the applications deployed to achieve its best
performance. Therefore, we must create adapted tools that collect and display only the data that
affects the microservices of each application, as explained in Section 4.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 72 of 180

5.1 XR Application Management Framework Architecture

The AMF relies on the architectural components depicted in Figure 1 and is described in the following
(see Figure 39):

Figure 39: Architectural components of the XR Application Management Framework.

• The WEB Portal acts as the entry point to the CHARITY platform for end users (typically XR
developers), enabling them to upload into the platform the software artefacts representing
the building blocks of their applications, and to define an application model (Blueprint
Template) for the application itself. The model defines which building blocks (VNFs) compose
the application, how they are interrelated in terms of connectivity, and the requirements in
term of resource needs, hardware constraints and service level expected. All these pieces of
information are needed by the Orchestration and Monitoring layers to deploy the application
on the most suitable runtime and to enable the monitoring of the relevant QoS parameters. In
addition, the Portal also enables an end user of the CHARITY platform (an XR Service developer
or administrator) to trigger a deployment request for a specific Blueprint. This functionality is
also offered via REST API endpoints, to allow machine-to-machine activation for the use cases
that require automated workflow of deployments on behalf of an end user, started by a device
(in this case, the request will be mediated by a proxy owned by the same organization offering
the XR Application).

• The XR Service Enabler repository is the component responsible for storing and making
available the VNF images developed and packaged by the XR Service developers, in the form
of container or virtual machine images. Images can be uploaded to the repository by the
developers, tagged and enriched with metadata. Such images can be referred to during the
editing of an application Blueprint template.

• The XR Service Blueprint Template repository is the component responsible for the storage,
versioning and access of the application Blueprint Templates created by the XR developers.

• The backend microservices are the components implementing the business logic of the Portal.
Each microservice is specific for a set of functionalities provided by the user interface. Two
microservices have been implemented for the interaction with the XR Service Enabler
repository and with the XR Blueprint Template repository. An additional microservice is
dedicated to the translation at runtime or a upon request of a blueprint template into the
TOSCA representation expected by the orchestration layer for deployment actions.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 73 of 180

• The TOSCA Model is the model that allows to define an application Blueprint Template through
a TOSCA-compliant representation. Being compliant to an official standard supported by the
ETSI Mano specification is critical not only from the technical viewpoint, but also for
dissemination purposes, as it allows to use a language shared and understood by the scientific
community.

• The TOSCA Translator is a component that converts, upon a deployment request, the
representation of the application Blueprint created by the XR developer from the AMF internal
format (JSON) into the TOSCA format defined for CHARITY.

• The Authentication and Authorization layer ensures that all the access to resources provided
by the portal and by the backend components are made by users or services which have proper
permissions. For both end users and automated services, a role-based policy is enforced and
checked at every request leveraging a centralized component which denies access whenever
a condition is not met.

5.2 XR Application Management Framework Portal

The Portal has been designed with extensibility and separation of roles in mind. Due to the large
number of services and components envisioned for the CHARITY platform, the Portal architecture
leaves space for any additional functionality made by independent development teams, each one
responsible for specific areas of the platform.

To provide this level of flexibility and independence, the Portal adopts the Micro Frontend
architecture23 paradigm. With Micro Frontends, the visualization layer (Web GUI) is composed by a
shared main application (Web App Shell) which acts just as a placeholder for views defined and
managed by independent applications. As shown in Figure 40, this paradigm allows different
development teams to work in parallel, implementing their pipelines independently and in a
technology-agnostic way and to integrate seamlessly the visualization of their services in the GUI,
without the support of teams dedicated to the GUI layer.

Figure 40: How a Micro frontend architecture enables independent end to end development workflows24.

23 https://micro-frontends.org/

24 Picture taken from: https://www.trendmicro.com/it_it/devops/21/h/micro-frontend-guide-technical-integrations.html

https://www.trendmicro.com/it_it/devops/21/h/micro-frontend-guide-technical-integrations.html

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 74 of 180

To implement the CHARITY Micro Frontend architecture, a set of tools and technologies based on Html
and JavaScript have been selected (Figure 41), namely:

• AngularJS: for the visualization layer

• Webpack: a static module bundler for modern JavaScript applications, specifically the
Webpack Module Federation functionality, which allows forming a single application by the
composition of several separate builds. These separate builds should not have dependencies
between each other, so they can be developed and deployed individually.

Figure 41: Technologies allowing Micro Frontends in CHARITY.

In the following we show, with the help of screenshots, the AMF Portal functionalities implemented in
this project.

The entry point to the platform is the Login page (Figure 42). From the end user standpoint, the login
mask is a typical form requiring user and password for entering the portal. Indeed, the login is not
directly implemented into the Portal, but is delegated to the external Authentication and Authorization
system which knows about users, services, roles and the related assignments according to the openid-
connect protocol.

Every call to an XR AMF endpoint, comprising invocations coming from and to the backend
microservices, must contain a token returned by the external openid-connect authenticator. Such
token is self-contained, meaning that it contains, among many pieces of information, also declarations
about the roles of the callers.

Figure 42: Login page mediated from the openid-connect authentication provider.

For users with role properly configured, the login will provide a token that allows access to the portal
GUI sections for the management of VNFs and creation and management of Blueprints. Furthermore,
the operations performed by the Portal on behalf of the user towards the backend services are checked
against the roles of the end user and are filtered accordingly.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 75 of 180

Once a successful authentication is performed, the user is redirected to the AMF GUI landing page,
which is currently offering the “Manage VNF Images” and “NS Blueprint Templates” high level
functionalities (Figure 43).

Figure 43: Landing page for an XR Developer.

The “Manage VNF Images” area allows a developer to:

• List (Figure 44) the VNF images available in the system (private to the developer or public for
their organization).

Figure 44: List of VNF images available.

• Upload (Figure 45) a VNF image, packaged as container image, into the CHARITY XR Service
Enabler repository. They can also specify additional data to enrich the basic information (image
name and tag) representing the VNF.

Figure 45: Add new image form.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 76 of 180

Following the standard for the management of container images, the user does not upload the VNF
image data directly into the Portal, rather they get back a command to push the image into the image
registry where images are backed. This allows quick uploads when existing images are updated or
tagged, as only the new layers are appended to the existing ones. To allow this, the end user is also
automatically authenticated to the image registry in the XR Service Enabler Repository, through proper
configuration of roles in the authentication provider component. They will get a secret that will be
used as password in the image related commands (push/pull/tag).

The “NS Blueprint Templates” functionality allows for the visualization, creation, and maintenance of
Blueprint Templates.

The main page (Figure 46) lists the Blueprint Templates available to the end user, depending on his/her
role. For every item, the user can view the details and, depending on the access rights, modify the
template. In addition, a button in the top right area allows for the creation of a new Template.

Figure 46: Main page for the “NS Blueprint Templates” functionality.

The Blueprint Editor is based on an “accordion” visualization, which is a collection of expandable items.
Every item corresponds to a specific element of the template and can in turn comprise a secondary-
level accordion to represent a collection of sub elements.

This allows to maintain the visualization compact, expanding only the element that the user wants to
edit.

Figure 47 depicts the “summary” view that the user gets when selecting a Blueprint Template from the
list. The GUI shows only top-level components, and for each of them, the number of defined elements
(blue numbered icon) and an arrow for expanding into the details. At the same time, it is also possible
to expand all the elements to have a complete view of the whole definition.

Figure 47: Summary view (“Collapsed”) of a Blueprint Template definition.

By expanding the “Network Service Info” panel (Figure 48), the user can edit general information such
as the service name, a description, and a version number. They also can define the input variables

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 77 of 180

whose values might be initialized with instance specific values at deployment time (e.g. the
GamerLocation in this example).

Figure 48: Editing of the NS general information.

The next panel (Figure 49) allows to describe the “External Devices”. This step is needed whenever it
is necessary to describe to CHARITY XR applications how external devices interact with them. In
particular, they can define a set of connection points describing which ports are used for the
communication.

Figure 49: Editing of the NS “External devices” Section.

The “VNFs” panel (Figure 50) is where the XR developer specifies which set of VNF composes the
application. For every VNF to be added to the template, the user can:

• Specify a name.

• Search for the VNF image from the XR Service Enabler Repository.

• Specify some recommendations for the deployment (e.g., edge node/cloud node preferred).

• The set of connection points (ports description) used by the VNF image.

• The input data they should receive, or other relevant information that may be needed (e.g.,
location) which are not part of the application but are needed to better specify the application
components deployment.

• Custom parameters to be injected at image deployment time (e.g., environment vars).

• Requirements in terms of hardware or software resources (e.g., CPU, RAM, GPU, Operating
System, … – not shown in the figure).

The developer can iteratively repeat the editing for each VNF to be added, by clicking the “Add VNF”
button in the bottom right area of the VNF panel.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 78 of 180

Figure 50: Editing of the VNFs section.

The “Virtual Links” panel (Figure 51) allows the developer to specify how all the components defined
should communicate to each other, and what are the requirements of the connection in terms of
quality of service.

For every virtual link, the user can define a name and, most importantly, can easily define through a
multi-select drop down list the VNFs and related connection points that the virtual link itself is
expected to connect. A detail of the multi-select drop down list is shown in Figure 52: the multi-select
shows all the connection points defined in the Blueprint, grouped by VFN, and provides checkboxes
for each of them. The user has a clean view of all the connectable endpoints and can easily select all
the ones to be connected by the current Virtual Link.

After defining the relationship between the Virtual Link and the connected points, the user can define
requirements related to the QoS via a slider-based interface.

Currently, it is possible to specify requirements for:

• Minimum bandwidth (Kbps, Mbps, Gbps)

• Maximum latency (ms)

• Maximum jitter (ms)

For bandwidth, it is also possible to specify the unit via a drop-down list.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 79 of 180

Figure 51: Editing of the Virtual Links section.

Once the Blueprint Template editing has been completed, AMP displays a simple graph representing
the network topology relations between the Blueprint Template objects (VNFs, CPs, VLs and Externals).
Figure 53 shows the screenshot of the Blueprint Template described in this chapter.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 80 of 180

Figure 52: Detail of the multi-select drop down list for specifying Virtual Link connectivity.

Figure 53: Blueprint Template simple topology graph.

After the design phase, AMP also guides the deployment phase of XR applications, from the Application
Management Web GUI page. Figure 54 shows a screenshot of this page for the previously described
Blueprint Template, notice the presence of the input variable GamerLocation, whose value needs to
be filled in to provide the Orchestrator geo-location information about the clients to allow the
placement of EDGE components optimizing their network proximity.

Figure 54: XR Application Management AMP page.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 81 of 180

After the input of the GamerLocation information, using the “Deploy new application” button the
deployment request for the Blueprint template is requested by providing the specified input value(s).
The REST API used to start the deployment (see next section) will return an ‘xrapplicationid” that can
be used to retrieve further deployment status progress information, as well as output parameters (e.g.
IP addresses/URLs of VNFs/CPs, etc). Figure 55 shows a screenshot of a deployment summary.

Figure 55: XR Application deployment status summary.

Finally, the “Details” section can be expanded to display a geographical map showing where the
Blueprint components have been deployed, followed by the table of the out variables, as shown in
Figure 56.

Figure 56: XR Application deployment details.

Notice the green marker for the GamerLocation (“Italy/Rome” has been selected), and the blue marker
for the VNFs: the GameServer in Milan datacenter, and the MeshMerger (in this example requiring a
specific GPUs not available in Milan DC) deployed at Zurich DC (providing the NVIDIA GPU model).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 82 of 180

5.3 XR Service Enabler Repository

The XR Service Enabler Repository is the CHARITY component responsible for storing and managing
the VNF images developed by the XR developers to the CHARITY platform. The images are stored in
the XR Service Enabler Repository via the Portal and are accessed from the Blueprint Editor page when
defining a Blueprint. The repository is also accessed at deployment time by the Orchestration and
Deployment layer, to retrieve the images to be deployed on the selected nodes.

CHARITY being a platform targeting cloud-native applications, the majority of the images implementing
a VNF are expected to be containers. For this reason, the XR Service Enabler Repository relies on
Harbor, a well-established and universally adopted open-source registry that secures artifacts with
policies and role-based access control.

The XR Service Enabler Repository provides a wrapping layer around Harbor, to allow developers to
enrich the information related to VNF images with additional meta data that Harbor does not allow to
specify. To support this scenario, the XR Service Enabler Repository tracks the information related to
the VNF images created by XR developers in a private database (NoSQL e.g., MongoDB).

The integration between the XR Service Enabler Repository and the AMF happens via REST API at
microservice backend level (described later in this section). The access to Harbor is mediated via the
same Keycloak Authorization and Authentication Realm used for the Portal.

5.4 XR Service Blueprint Template Repository

The XR Service Blueprint Template Repository is the place where the Blueprint Templates defined by
XR developers are stored. The templates created are stored in a private, non-relational MongoDB,
which is accessed via a REST API provided by a dedicated microservice.

Template data are stored in the database in the form of JSON objects, as this format is the most
suitable for communication and integration with web interfaces.

At deployment time, the JSON representation of the Blueprint Template is translated into the TOSCA
model of the application, which is the format understood by the orchestration layer.

5.5 Backend Microservices

The functionalities exposed to end users via the GUI are enabled by a set of microservices, representing
the backend layer and each one dedicated at a specific business function.

5.5.1 Microservices Architecture

The microservices implemented so far are providing their services based on REST communication,
exposing to the GUI layer all the operations needed to create, update, get, delete data required to
implement the business function they are dedicated to. They are stateless, where the data persistence
is delegated to external database or file storage systems.

5.5.2 Selected Technologies

The microservices implemented so far are based on the following technologies:

• Spring boot, an open-source framework based on Java which simplifies the development of
micro services and their packaging into container images.

• REST API, a Web API conforming to the REST architectural style (REST is an acronym for
REpresentational State Transfer and an architectural style for distributed hypermedia
systems).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 83 of 180

• MongoDB Community Edition, an open-source NoSQL database management program that
can manage document-oriented information.

• Keycloak connectors for enabling Keycloak-based Authorization and Authentication to
microservices endpoints.

5.5.3 VNF Image Microservice

The VNF Image microservice provides means to manage all the information needed by the XR Service
Developer for the representation and storage of a VNF Image within the CHARITY ecosystem, in
connection with the XR Service Enabler Repository. The core of a VNF Image is the container created
by the developer outside CHARITY. This core image is then enriched with metadata relevant for the
CHARITY platform and uploaded into the CHARITY Harbor registry within the XR Service Enabler
Repository, so that it will be available:

• to XR developers, when defining a Blueprint Template for an XR Service.

• to the CHARITY Orchestration layer, at runtime when the images must be retrieved, deployed
and started in the form of containers in the CHARITY Cloud or Edge nodes.

Figure 57 depicts some of the operations provided by the VNF Image microservice:

• getting all the VNF images available to the user, depending on their permissions, in the
repository.

• getting a summary data for available images.

• getting detailed data for the images and tags.

• getting available Harbor projects.

Figure 57: Sample list of REST ‘GET’ operations provided by the VNF image microservice.

The enrichment of VNF Image information with additional metadata and the storage of such
representation is stored into a private MongoDB instance.

5.5.4 Blueprint Microservice

The Blueprint microservice provides all the endpoints and functionalities to create, update, delete,
persist the representation of a service Blueprint Template. Based on the information provided by the
XR Service Developer via interaction with the Web GUI, a JSON representation of the Blueprint is
created and stored into a private MongoDB instance.

The JSON representation of the Blueprint Service will be then translated, when needed (upon request
or at deployment request time), into a TOSCA representation which is suitable for the Orchestration
layer.

Figure 58 shows the endpoints provided by the Blueprint microservice for:

• updating an existing Blueprint Template.

• adding a new Blueprint Template.

• getting all available Blueprint Templates (filtered by permissions).

• getting a specific Blueprint Template.

• deleting a blueprint.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 84 of 180

• getting summary data on Blueprint Templates.

Figure 58: Endpoints of the Blueprint microservice REST API.

5.5.5 XR Application Microservice

This microservice is responsible for the management of XR applications, i.e. deployment instance of
Blueprint templates. Figure 59 shows the endpoints provided by the XR Application microservice for:

• Deployment of a new XR Application from a Blueprint Template, providing (if configured) a set
of input variables values specific for the new instance

• Retrieve information about one (or all) XR applications: deployment status, oputput
parameters, status history, alarms and alerts)

• Undeploy an XR Application instance

Figure 59: Endpoints of the XR Application microservice REST API.

Notice that the deployment of an XR application is a long lasting operations, thus the REST API will not wait for
its termination, rather it will quickly return an “xrapplicationid” to be used with the information queries to
retrieve deployment status progess information.

5.6 TOSCA Model for Blueprint Templates

As introduced in Section 3, the TOSCA Model allows to define an application Blueprint Template
through a TOSCA-compliant representation25.

The Model has been defined taking into account the capabilities of the TOSCA specification, focusing
in particular on the Tosca Simple Profile v1.3 specification26.

Citing from the TOSCA Simple Profile definition written by the OASIS Standards dedicated group:

25 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

26 https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 85 of 180

“The TOSCA metamodel uses the concept of service templates that describe cloud workloads as a
topology template, which is a graph of node templates modeling the components a workload is made
up of and of relationship templates modeling the relations between those components. TOSCA further
provides a type system of node types to describe the possible building blocks for constructing a service
template, as well as relationship types to describe possible kinds of relations. Both node and
relationship types may define lifecycle operations to implement the behavior an orchestration engine
can invoke when instantiating a service template [...]. The TOSCA simple profile assumes a number of
base types (node types and relationship types) to be supported by each compliant environment such as
a ‘Compute’ node type, a ‘Network’ node type or a generic ‘Database’ node type. Furthermore, it is
envisioned that a large number of additional types for use in service templates will be defined by a
community over time. Therefore, template authors in many cases will not have to define types
themselves but can simply start writing service templates that use existing types. In addition, the simple
profile will provide means for easily customizing and extending existing types [...]”.

In the CHARITY scenario, we selected the TOSCA Simple Profile v1.3 specification26 as the basis to
represent the XR Services and the relationships between the components, while we defined custom
types to tailor the TOSCA capabilities to the specific needs of the XR Applications deployment scenarios
in CHARITY.

Leveraging the support for the YAML representation of the TOSCA specification, we defined such
custom types in a “charity_custom_types.yaml” document, to be imported in the TOSCA model
according to the specification rules. The contents of the custom type definition are documented in
Appendix A.1.

In the following, we give some examples of how the TOSCA specification defined for CHARITY can be
used to represent an XR Service.

Figure 60 shows an example of a TOSCA Blueprint Template header section, where general information
are set and the custom types specification file is imported into the model.

Figure 60: Sample TOSCA Blueprint Template header section.

Figure 61 shows an example about how to represent a CHARITY Component (a Game Server needed
by a gaming use case) and a CHARITY Node (a runtime node where the component should be run). The
Component section specifies what must be executed in terms of VNF image, some deployments
preferences (e.g. EDGE), and the requirements in terms of runtime node.

The Node section specifies the characteristics required for a valid runtime node.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 86 of 180

Figure 61: Sample representation of a CHARITY Component and a CHARITY Node.

Figure 62 shows an example similar to the previous one, specifying a container image as VNF image
type, bur suggesting a CLOUD deployment, and the request for a specific GPU.

Figure 62: Another sample representation of a CHARITY Component and a CHARITY Node.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 87 of 180

Figure 63 shows how to represent an “external device”. This kind of representation may be required
to model the interaction with an external system that has to pass some parameters (in the example
the location) to the application deployed by CHARITY.

Figure 63: Representation of an external device.

Figure 64 shows how to represent connection points, which are elements needed to define how a VNF
communicates with other VNFs or systems. In the most simplified representation, they specify the port
numbers used by a VNF for inputs and outputs, and the names of the (virtual) links that connect such
ports.

Figure 64: Representation of connection points.

Figure 65 shows how to represent a virtual link, which is the communication link between two VNFs or
with external system. The virtual link can be qualified with requirements in terms of quality of service
parameters, e.g., for specifying bandwidth or latency requirements.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 88 of 180

Figure 65: Representation of a virtual link with QoS requirements.

5.7 TOSCA Translation

The TOSCA Translator is a component that converts, upon a deployment request, the representation
of the application Blueprint created by the XR developer from the AMF internal format (JSON) into the
TOSCA format defined for CHARITY. The design principles behind this component are:

• It is a dedicated microservice, specific for the translation from the JSON representation of a
Blueprint Template into a TOSCA YAML representation.

• The translation is be based on a templating engine (e.g., Jinja in case of a microservice based
on a Python stack, or Jinjava for Java based microservices, depending on the selected
technologies for implementation), with placeholders and extended capabilities for expressing
variables, statements and expressions.

• It provides a REST API to the Web GUI layer to perform translation requests
Trevious sections TOSCA snippets were extracted from Web GUI snapshots, provided by AMP using
this API: Figure 66 displays a sample view of this feature.

Figure 66: Example of display of TOSCA model.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 89 of 180

6 Algorithms for Service Orchestration

6.1 Deterministic Networking in Service Orchestration

Optimal SFC (Service Function Chain) embedding onto physical networks has drawn much attention in
the recent literature. However, most of the existing work in the literature focused on maximizing
network throughput/resource efficiency, regardless latency requirements; whereas maximizing
network resource efficiency while keeping the service latency and latency variation (jitter) within a
deterministic bound has received less attention. In traditional networks, the end-to-end latency/jitter
curves have a wide probability distribution with a long tail. A deterministic orchestration mechanism
would ensure bounded end-to-end latency and delay variation with no long tails in an end-to-end
converged network; ultimately supporting deterministic services such as XR services. Also, it is
important to increase the profits of service providers by optimizing the resource allocation and
placement of VNF instances while ensuring deterministic latency performance. Moreover, due to the
highly dynamic nature of network traffic load, it is a challenge to embed SFC requests with
deterministic latency bounds and lower jitter (i.e., SFC of XR services) during the SFC lifetime.

Figure 67: Example of SFC requests in 5G edge networks [27].

Figure 67 shows an example of SFC request embedding in a 5G network. Edge nodes are equipped with
a certain amount of processing resources and switching ability. At cell sites side, user devices generate
SFC requests over time, and the SFC requests are featured with latency requirements, which are
comprised of communication latency and VNF processing latency. These SFC requests can be also made
in response to a request from XR application developers. Once a new SFC request arrives, optimal path
selection and processing resource allocation should be performed in order to meet the latency
requirement of the XR service supported by the SFC. For example, when a request for SFC 2 with an
end-to-end latency requirement of 15ms arrives, considering the network load status and distance
between source and destination nodes, Path 2 would be selected with communication latency of 2ms.
Then the VNF processing budget would be 13ms. Therefore, it is important to allocate an appropriate
amount of processing resources to each VNF composing the SFC in order to make sure the latency
would remain less than 13ms while minimizing the cost of VNFs processing.

To achieve deterministic orchestration, and as detailed in [27], we followed an approach that consists
in separating this problem into two distinct sub-problems: (i) how to optimize the resource allocation
and path selection for SFC deployment; (ii) how to adjust resource allocation to ensure the bounded
service latency and jitter under the traffic variation, which can ultimately maximize the overall incomes
for ISP. These two aspects form the whole procedure of lifetime management for SFCs. The first sub-

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 90 of 180

problem is to be solved in two directions: (i) improving service acceptance ratio (i.e., increase the
revenue derived from providing services to users); (ii) reducing resource consumption by optimizing
resource allocation to VNF instances (i.e., reduce the network cost for ISPs). Given that propagation
and transmission latency can be considered as being deterministic, we need to bound the non-
deterministic VNF processing latency in order to achieve an overall deterministic end-to-end latency
and jitter for time-sensitive services. For the second sub-problem, we investigate the optimal VNF
scaling up/down scheme in response to the traffic variation to keep the bounded latency by
considering the historical network load, which shall help avoid resource bottleneck and reduce
network congestion.

In [27], the problem was formulated as follows. Given a physical network topology and a set of SFC
requests, we need to determine: 1) the path between source and destination nodes and place VNF
instances along the path, 2) the right amount of processing and bandwidth resources for corresponding
VNFs and traffic, 3) how to adjust resource allocation when traffic load varies; while maximizing the
profits of the ISP from running SFC requests and ensuring deterministic e2e latency performance. The
traffic of SFC request will traverse a series of ordered VNF instances and this selected path of nodes
will influence the resource consumption on edge nodes and physical links. How to select suitable paths
and allocate resources for SFC requests remain a challenge for deterministic latency performance and
maximum resource efficiency.

As stated previously, the Lifecycle management procedures of the SFCs are divided into two phases:
SFC deployment and SFC adjustment, which are solved by the proposed Det-SFC deployment (Det-
SFCD) and the Det-SFC adjustment (Det-SFCA) algorithms, respectively. In SFC deployment phase, 1)
optimal paths need to be selected to avoid the resource bottleneck when deploying SFCs, ultimately
increasing SFC acceptance rate; 2) VNF instances need to be sized optimally to minimize the resource
costs while ensuring the latency requirements. In the SFC adjustment phase, optimal VNF instance
scaling up/down scheme should be designed so latency variation would be controlled within a small
range.

Figure 68: Performance evaluation of DET-SFCD and DET-SFCA algorithms [27].

The conducted performance evaluation (Figure 68) showed that the proposed algorithms achieved
more than 15% enhancement in SFC acceptance rate and an average 35 % more overall profits in
comparison to the baseline solution. Also, Det-SFCA results in a higher utilization. Without considering
deployment cost, the baseline solution exhibits a lower utilization of CPU resources by rejecting more
SFC requests due to resource bottleneck. This is due to the fact that during the adjustment phase, the
resource adjustment is performed without taking into account the history of network load dynamics.

6.2 Service Placement & Resource Scheduling

Managing and allocating resources for the network processes and functions is an important aspect to
XR applications. This is mainly due to the fact that XR applications compose tasks of image processing,
high-quality display, resource-hungry computations, and faster packet forwarding. Further,
onboarding and scaling these complex ecosystems of cloud-native applications, based on
microservices, is also an important factor to consider.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 91 of 180

Traditional network resource management involves a simple system model and low-level design where
an application determines the amount of network resources, for example, bandwidth needed for the
data flow of the application. The network manager acts as a reservation system to allocate the
computed requirement of the resources based on the resource availability. This tends to be inefficient
especially for applications with distributed service placements.

An alternative approach is, instead of directly specifying the network resources to the network
manager, the application can submit the requirements in terms of both constraints and objectives. The
network then calculates the optimal resources based on the requirements. While this reduces the load
on the application, this increases the burden of in-network compute to calculate the optimal
allocation. Additionally, the application could end up sharing some of its proprietary information with
the network.

Given the distributed nature and heterogeneity of resources from one side and the distribution of XR
services across network elements on the other side, it is not trivial to use the existing datacenter
resource scheduling techniques without a careful tailoring to requirements of CHARITY. For example,
Figure 69 shows a Deep Learning (DL) task within an XR application. The variants of the request can be
the devices requesting, accuracy and latency requirements of the DL model. Based on these goals and
constraints in terms of load spread across the network devices, the decision needs to be made at
runtime.

Figure 69: Request scheduling for optimal resource allocation at real time.

To this end, we are building a learning paradigm based on uncertain network dynamics and algorithms
that can learn and adapt to the environment based on resource availability. We call this Adaptive
Scheduling of Edge Tasks (ASET), which runs a smart RL agent trained using real-world network
topology and identify the best policy to schedule the workloads in a network leveraging Deep
Reinforcement Learning (DRL) techniques. The policy can be as simple as executing a task at the closest
edge cluster to schedule based on latency and load at real time.

Figure 70: Adaptive Scheduling of Edge Tasks (ASET) workflow.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 92 of 180

Our adaptive scheduling approach aims to learn the optimal policy depending on current system
conditions, e.g., current applications, network topology, and stream arrivals that vary over time. Due
to the lack of labelled data, the optimal policy learning is formulated as a RL problem; hence, an
intelligent agent tries to learn the optimal policy selection strategy according to the observed state of
the environment. This is accomplished by an RL policy that estimates a probability distribution of each
possible action (policy selection) that cumulatively maximizes a reward (typically maximizing the
fraction of queries that are served successfully), as shown in Figure 70.

Figure 71: Percentage of successful queries over time for ML task with users arriving in real-world pattern.

Initial results suggest, even with partial view of the network resources, ASET performs better than
traditional scheduling mechanisms (Figure 71). We simulate the scenario of users arriving in real-world
pattern. The work is still on-going to implement better selection of policies through multi-agent
communication, security & privacy-aware and real-world deployments. Furthermore, we envisage to
integrate the scheduler with AIRO to render both smart orchestration and scheduling for XR
applications facilitating cloud-edge continuum.

6.3 Decentralized Service Replica Management

The pace in the adoption of Edge Computing is rapidly increasing in the attempt to bring computation
as close as possible to the data producers and consumers (e.g., end-users) [28][29] . In principle, the
transition to the Edge showcases exciting properties: it is cost-effective for the application providers
while being more convenient for the end-users, who enjoy more personal applications. For example,
interactive applications (such a multiplayer games and VR) have strong requirements on latency to
keep their immersiveness and might benefit from being placed at the Edge.

However, for these properties to hold, applications must be placed and replicated correctly by
matching their requirements with resource capabilities and the position of the users. Such a process
can result in the spawn of many replicas of the same service in different resources of the edge platform,
which can rapidly erode the promised cost-effective benefit. Also, the problem becomes even more
challenging when considering that application requirements and resource capability can change over
time, even when the application is running and accessed by the moving end-users. Therefore, there is
a need to adapt the application placement during runtime to maintain the promises regarding the
quality of experience.

In the context of CHARITY, we consider that the system at-the-edge is made of entities with a specific
geographic location representing a small-to-mid pool of potentially heterogeneous resources (i.e., EM
– Edge Miniclouds). For the sake of simplification, one can model a system in which each EM is
modelled as the sum of all its available resources. EMs build a decentralized system by employing a set
of point-to-point communication with each other. Users of the system request the services provided
by a set of applications. Each application offers a different type of service. Several application instances
(or replicas) can be deployed on several EMs, based on users’ requests and QoE constraints. Each EM
supervises the execution (and all the related optimization aspects) of the application replicas received.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 93 of 180

In this context, we are interested in an approach that, proactively and in a decentralized fashion,
controls the number of application replicas of the same service in an Edge Computing platform, while
meeting the requested QoE promises. The approach should decide which replicas to maintain active
and to ensure that the matching of application requirements and resource capability is respected. This
approach can also trigger live migration of an application between resources of the Edge platform, by
considering the impact of migration on the quality of service.

As a first step to study and evaluate our approach, we plan to use extensive simulations to validate our
approach within CHARITY framework, but it is a line of investigation that it is still open. Our idea is to
use the PureEdgeSim simulator [30], a discrete-event simulator for Edge environments. The simulated
scenario would consist of a federation of EMs. Each EM is composed of a heterogeneous set of
resource-constrained edge devices and servers, able to host various types of applications. Each EM can
be simulated as a single aggregated entity with a PureEdgeSim Datacenter object with a capacity equal
to the sum of the resources of the devices and servers that compose it. Each user device can be
simulated with a PureEdgeSim EdgeDevice object (e.g., a tablet or a smartphone). An early experiment
along this path is reported in [31].

6.4 Managing Network Slice Mobility for 6G Networks

Efficient network resource provisioning should be investigated to support the strict latency and
bandwidth requirements of future 6G XR services, such as in holographic communications and
industrial automation scenarios. Compared with 5G, 6G will face more challenging situations, including
an open communication ecosystem, higher network management levels, and ubiquitous intelligence.
The role of network slices in supporting diverse 6G use cases and the importance of managing these
slices to maintain service level agreements (SLAs) should be investigated. The network slices are
foreseen as a network solution to support advanced XR users and applications with strict latency
requirements. To achieve the necessary SLAs, network slices are provisioned with specific resources
that are coupled with services, as well as the corresponding mobile users, during the whole lifetime of
the slices. Especially for some dynamic scenarios where the user demands rise or drop, it needs strict
slice adjustment and migration strategies, for both the network resources and services running on
them, which can be referred to as network slice mobility (NSM). While a slice is migrated from one
service region to another, all these factors, i.e., service migration and network resource migration,
must be considered to guarantee service continuity.

We devise a two-level network architecture consisting of a physical layer and a slice layer [32]. It
defines the state of MEC servers and slices and introduces two types of triggers for NSM: Slice Resource
Trigger (SRT) and Slice Migration Trigger (SMT). The primary objective of designing SRT is to monitor
the slices themselves, allowing for more flexibility and exploration of a wider variety of new activities,
such as scale up/down operations. The SMT trigger may result in slice migration based on the CPU and
RAM utilization of the MEC server if the current residual resources in a MEC server cannot support the
scaling up of some slices. We then formulate the NSM problem as a distributed system with multiple
MEC servers running various network slices, aiming to maximize system profits over time.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 94 of 180

Figure 72: The motivational example of prediction based NSM scheme [32].

Different from the traditional solution, we propose a scheme that leverages user and network demand
predictions to determine NSM policies. It assumes a time-slotted system and use traffic prediction
methods to obtain accurate prediction information. The scheme prioritizes slices based on their
importance and uses the prediction information to decide on scaling up/down or migrating slices to
different MEC servers. As shown in Figure 72, two motivational examples are presented to illustrate
the prediction-based slice mobility scheme. Three types of network slices with high priority (HP),
medium priority (MP) and low priority (LP) exist in the networks. In Figure 72(a), the MP slice needs to
be scaled up at time t+1 due the increasing resource demands of users, i.e., (8, 4), and the resource
demand of LP slice is also increasing in the following time slots. Due to the physical resource capacity
constraints, there are not enough network resources, e.g., CPUs, for this scaling up operation. Thus,
an intuitive policy might be migrating this MP slice to MEC server 2, which still has adequate network
resources. However, if we consider the future resource demand of this MP slice, we will find there is a
downward tendency of resource demand in the next time slot, e.g., from t + 2. As a result, an intelligent
policy should be scaling down the LP slice in MEC server 1 at time t+1 since slice migration operation
will also induce some cost. In the other case, if the resource demand of an MP slice increases
continuously in t + 1, t + 2..., there will be resource competition in the next time slots with LP slices for
a relatively long time, which will induce much degradation cost for this LP slice. At the same time, the
total resource demands of MEC server 2 present a decreasing tendency from t + 1 as shown in Figure
72(b) if we have the prediction information of all the slices in MEC server 2. Under this circumstance,
an intelligent policy should be migrating the MP slice towards MEC server 2 to accommodate the
increasing user demands, eventually minimizing the total system cost.

Figure 73: The cost, revenue, and profit of the considered system versus N [32].

We compare the proposed scheme with two benchmark solutions: 1) reset scheme: the slices in t scale
up/down based on user demand, and the slices cannot migrate to other MEC servers even the
resources are exhausted and 2) greedy scheme: the slices scale up/down firstly, if the resources are
exhausted, the slices greedily migrate to the nearest MEC servers of its users. The performance is
evaluated in terms of system cost, revenue, and profit. The results show that the proposed scheme
outperforms the benchmarks, with higher overall profits due to efficient resource utilization and lower

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 95 of 180

system latency. We set α and β as the cost coefficient of the CPU and RAM. From Figure 73(a), we can
observe that the system cost of different schemes and combinations gradually increase with N, since
the increasing MEC server serve much more users, who request more resources. Moreover, in Figure
73(a), each scheme with lower α results in higher cost, which reflects that the requested RAM
resources cost more than the requested CPU cores. In Figure 73(b), we compare the revenue of
different schemes with different parameter combinations. We can observe that each scheme with
lower α have higher revenue, and the proposed scheme with all (α, β) combinations has much higher
revenue compared to the reset scheme and greedy scheme, since the proposed scheme’s strategy
considers migrating all the slices to their nearest MEC server and thus achieves much lower system
latency. To further evaluate the performances of different schemes, we investigate profit of these
schemes, as shown in Figure 73(c). We can observe that the proposed scheme outperforms other
schemes in all parameter combinations. As a result, the proposed scheme averagely increases the
system profit by up to 30 times and 19 times compared to reset scheme and greedy scheme,
respectively.

6.5 Self-sustaining Multiple Access for Dynamic Metaverse Applications

XR services, particularly metaverse-relevant applications, pose unique challenges for network
infrastructure. Efficient and reliable communication is crucial for supporting diverse applications, e.g.,
XR services, within the metaverse, requiring innovative solutions for managing network resources.
Multiple access refers to the technique of allowing multiple users to share the same radio spectrum

efficiently. In dynamic environments, where the number of active users and their demands constantly
change, traditional access control methods struggle to adapt effectively.

We propose using Continual Deep Reinforcement Learning (CL-DDQL), a specific type of deep

reinforcement learning, to address the dynamic nature of multiple access in metaverse applications
[33]. The RL system is modelled as an agent interacting with the network environment. The agent
observes network states (e.g., channel conditions, user locations) and takes actions (e.g., assigning

channels to users) to maximize its reward (e.g., overall throughput). Unlike traditional DRL, CL-DDQL

enables the agent to continuously learn and adapt to new situations and changing network dynamics.
This is crucial for handling the evolving nature of user activity in the metaverse. In addition, double
deep Q-Learning (DDQL) technique within CL-DDQL helps to address the overestimation problem

commonly encountered in DRL, leading to more stable and reliable learning, as shown in Figure 74.

Figure 74: The DDQL agent and evaluation network of DDQL [33] .

Decentralized decision-making process is also involved in the agent training. Each user acts as an agent,
learning and adapting its access strategy based on local observations and interactions with other users.
The CL-DDQL algorithm helps users learn to select channels and adjust transmission power to minimize
interference and maximize overall throughput for the entire network. In addition, CL-DDQL is effective
in tackling the non-stationary nature of metaverse environments, where user activity and network
conditions constantly change. Compared to traditional methods, the proposed approach demonstrates
significantly higher throughput, especially in highly dynamic scenarios with fluctuating user numbers.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 96 of 180

The CL-DDQL algorithm enables the agents to learn and adapt quickly, achieving optimal performance
within a shorter timeframe.

Figure 75: Normalized throughput, collision rate, and convergence time vs. (a) the average active time, (b) the
number of channels of UEs for CL-DDQL, DDQL, and Random. The results are the all-time average of the values

[33].

Consequently, the results demonstrate that CL-DDQL outperforms other multiple access methods in
terms of throughput, particularly in dynamic scenarios with varying user densities. The system exhibits
faster convergence, meaning the agents learn and adapt to new situations efficiently. The self-
sustaining nature of the approach allows for efficient resource utilization and reduces the need for
centralized control mechanisms. As Figure 75(a) demonstrates, the more frequent the context
transitions, the more continual learning improves the performance. This is due to the increased
likelihood of encountering repetitive contexts. In addition, the performance of CL-DDQL is hardly
impacted by an increase in the rate at which contexts are transited, making it suitable for the highly
dynamic environments of the Metaverse. Nonetheless, both algorithms perform better in
environments with less variability. For the second experiment, Figure 75(b) illustrates that as the
number of channels increases, the CL-DDQL algorithm becomes marginally more advantageous than
DDQL. Notwithstanding, the performance of the two algorithms is not significantly impacted by the
number of channels, leading us to conclude that while a greater number of channels provides more
idle time slots for the agent, it also increases problem dimensions and thus the number of novel
contents can be explored.

6.6 Dependency-aware Microservice Deployment in Edge Computing

The growing popularity of microservices architecture enables the development of complex
applications, e.g., XR services, by breaking them down into smaller, independent services. Edge
computing brings computation closer to data sources, offering low latency and improved
responsiveness for resource-intensive applications. Deploying microservices efficiently in edge
computing environments requires careful consideration of 1) interdependencies: microservices often
rely on each other for data and functionality, necessitating coordinated deployment to ensure proper
execution, 2) resource constraints: edge nodes typically have limited computational resources
compared to traditional cloud data centers.

We first model the problem of microservices deployment (MSD) as the max-min joint optimization
problem, which minimizing the overall system cost to promise the QoS of all the UE in the system. The
problem can be regarded as a mixed binary integer linearly constrained programming (MBILP).
Meanwhile, the objective can be seen as a binary integer linearly constrained quadratic programming
(LCQP) problem which is proved as NP-hard, thereby making it not feasible to solve it by heuristic
algorithm or dynamic programming because of its high computational and spatial complexity and large
scale. Thus, we carry out a Deep Reinforcement Learning (DRL) for microservice deployment to address
the complexities of dependency-aware microservice deployment in edge computing [34].

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 97 of 180

Figure 76: Implementation of attention modified soft actor-critic (ASAC) scheme [34].

The reinforcement learning framework is modelled as an agent interacting with the edge computing
environment as shown in Figure 76. The agent observes the state of the environment (e.g., available
resources, microservice dependencies) and takes actions (e.g., deploying microservices to specific edge
nodes) to maximize its reward (e.g., overall system performance). The agent utilizes a deep neural
network to learn and represent the complex relationships between microservices, resource
constraints, and system performance. We also introduce an attention mechanism within the deep
neural network. This mechanism helps the agent focus on the most relevant aspects of the
environment state, particularly the critical interdependencies between microservices, when making
deployment decisions. The DRL agent learns to consider the following factors when making
deployment decisions: 1) resource availability: the agent assesses the available computational
resources at each edge node, 2) microservice dependencies: the agent considers the
interdependencies between microservices to ensure they are deployed on nodes that enable efficient
communication and data exchange. 3) performance impact: the agent evaluates the potential impact
of each deployment decision on overall system performance metrics like latency and throughput.

Figure 77: Performance of average system cost under different number of edge servers, UEs and comparison
between the proposed ASAC and SAC [34].

Figure 78: Performance of system reward under different number of edge servers, UEs and comparison between
the proposed ASAC and SAC [34].

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 98 of 180

We demonstrate the simulation results in terms of the performance of average system cost and the
system reward. All the results are obtained by the average values of 20 times. (1) Performance of
average system cost: We deploy 20 UEs and 30 microservices in the system for the demonstration.
From Figure 77(a), it is observed that ASAC reaches the maximum average system cost when the
number of Edge servers is 10, while the optimal cost occurs when the number is 30. With the increase
in the number of Edge servers, the system cost becomes smaller until it converges. This is mainly
because fewer edge servers mean less disposable network resources, so as the number of edge servers
increases, system cost becomes smaller. Figure 77(b) shows the average system cost performance with
different UEs, 10 edge servers and 30 microservices are deployed in this case. When the number of UE
is 10, ASAC has the worst performance in the beginning but achieves the lowest cost in the end, while
UE is 30, the performance is the worst. This is because the AMR algorithm occupies many network
resources at the beginning of the system representation, and finally, the resources are optimally
allocated with the system operation. We deploy 10 edge serves, 20 UEs, and 30 microservices in the
following case. Figure 77(c) shows that the proposed ASAC reduces 5% average system cost compared
to the original SAC. The main reason is that ASAC extracts the critical features from the system,
accelerating the deployment speed at a lower cost. (2) Performance of system reward: For the same
settings as the above demonstration, respectively, we carry out the performance of system reward,
shown as Figure 78. It can be observed that when the edge server is 30, ASAC achieves the best
performance in Figure 78(a), the performance improvement is positively correlated with the number
of edge servers while there is a negative correlation with the increase of users in Figure 78(b). The
reason is that when UE is 10, it occupies many network resources, which leads to the high system cost
in the beginning, while when UE is 30, the average system cost is over-consumed, resulting in the low
QoS for each UE. Figure 78(c) shows that the priorities of the proposed ASAC outperform the SAC
algorithm for almost 30%. The work concludes by highlighting the potential of DRL for enabling
efficient and dependency-aware microservice deployment in edge computing. It suggests potential
future research directions, such as exploring the integration of additional factors like real-time
resource monitoring and dynamic workload variations into the learning process.

6.7 GPU-based Primitives Supporting AI-based Service Placement

A proper placement of the micro-services of XR applications is highly important in the context of
CHARITY. Multiple edge resources, potentially heterogeneous and available at different locations,
must collaborate to deliver the right QoE to the end-users of the XR applications. Optimization and AI-
based approaches to find the proper location for edge applications have emerged as a relevant field
of study. Effectively, when using these approaches, there is the need for a consistent amount of
processing power. Optimization approaches (e.g., mixed-integer programming solvers) require many
operations to find the optimal solution, especially when the dimensions of the problem are high. On
the other hand, machine learning approaches require a training phase whose processing needs depend
on the complexity of the model and the size of the inputs. Distributed algorithms are well suitable to
solve this problem efficiently. Such class of algorithms, falling under the category of MRMOGAP, have
been briefly explained and analysed in Section 2. The process for creating an Aggregation could be
iterated if the MRMOGAP could not be solved, or the distributed algorithm raises exceptions during
execution or for example a set of resources are lost due to network connection failures or the
occurrence of disruptive events. In this case, it is possible to expand the actual Aggregation with
additional neighbours, or create a new Aggregation which is a superset of the old one, creating a
hierarchical structure with multiple levels of orchestration. The Aggregation could either persist or be
destroyed after the resolution of the application request.

In this context, solutions that help speed up the running time of the approaches mentioned above are
of high interest. In particular, solutions based on GPUs are promising, and that is according to recent
findings in the literature. More discussion and findings related to this can be found in deliverable D3.2,
as part of the research activities conducted in WP3 – T3.1 Efficient exploitation of CPUs, GPUs and
FPGA.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 99 of 180

6.8 Application Resource Management

Applications designed according to the principles of cloud native architecture and distributed across
computing nodes ranging from devices to the edge and the cloud need the support of container
orchestration to ensure they are adequately resourced to fulfil their objectives. However, the resource
usage demands of an application can ebb and flow according to usage patterns that often require
intimate knowledge of the application to usefully analyse. Through detailed monitoring, we can
externally observe resource fluctuations but fall short of diagnosing the appropriate course of action
to deal with them. This difficulty is exacerbated when we seek to accommodate applications that
dynamically adapt their use of resources according to business or operational imperatives. Such
circumstances arise, for example, when applications encounter scaling constraints in dealing with rises
in simultaneous users caused by resource shortages or budgetary constraints. In circumstances
whereby applications self-adapt to reduce resource usage (or increase it to exploit unused resource
availability), Kubernetes needs to ‘be in the loop’ so that resources can be efficiently managed. Self-
adaptation may not be as straightforward as detecting anomalies through monitoring and instructing
an application to reduce its fidelity or to toggle resource-intensive features while remaining in situ. It
may involve replacement of service instances or groups of them with differently configured variations
or a more radical change to the deployment topology with services being relocated across the edge-
cloud. In the remainder of this subsection, we present a model of partnership between application
self-adaptation and container orchestration to enable efficient application-aware orchestration.

6.8.1 Resource Usage Budgets

Recent years have witnessed increasing disaggregation of the cloud computing pricing model. We have
moved on from the days of paying per VM (offered in various tiers or so called “t-shirt sizes”) which
often resulted in organizations dimensioning for their pressure point (e.g., memory) and needlessly
paying for increases in the other dimensions of storage and computing muscle. Cloud providers now
offer a far more granular model in which multiple dimensions can be customized to a user’s projected
needs. In addition, we have moved on from organizations needing to dimension for their peak demand
while needlessly paying for idling resources outside of this time window. Hyperscalers are now offering
“burst” capacity to cater for workloads which experience varying demands over time.

Beyond the simplistic marketing headlines, however, lies a deep morass of pricing complexity. Cloud
spend is still wasted but in places that are not so easily monitored and detected. It involves many
contributing factors such as level of support, choice of services, choice of features, tiered usage pricing,
service level agreements, backup, and redundancy preferences, monitoring, and alerting.
Organizations are offered increasingly rich catalogues of services ranging from machine learning to
data analytics to quantum computing and all have their own pricing vagaries. Across just five
hyperscalers, the Cloud Price Index tracks over two million pricing variability points [35] [1] and it
remains notoriously difficult to accurately estimate costs pre-deployment. Edge computing
infrastructure, by its nature, is highly distributed and the resources available in each locality cannot
match the relatively endless scalability of large cloud computing data centres. For application providers
seeking to deploy across a cloud-edge continuum, it is reasonable to expect that pricing complexity
will not reduce and that they will seek mechanisms to instil overall resource usage constraints.

To stabilize costs, many organizations adopt a hybrid cloud approach in which some of the computing
resources are owned by the organization and typically reside on their premises, while the public cloud
resources are used to provide surge capacity and externally facing resources such as public web sites.
We will likely see enterprises deploy their own edge resources for campus-style scenarios to manage
costs and availability. The key concern is that edge resources, whether operated by the enterprise or
provided by a third party, cannot scale in a cloud fashion. They will consist of high-end, relatively
expensive physical resources (such as advanced GPUs), and they will need to be used judiciously.
Otherwise, application providers may quickly exhaust their budget or the available resources. CHARITY
vision is to integrate into the same platform resources provided by cloud providers with resources that
can be provided by the XR service providers. As explained above, this would allow more flexibility for

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 100 of 180

XR providers by easily leveraging cloud resources when needed while being able to extend the
resources at the edge. All of which will be managed and integrated into the same CHARITY platform.

6.8.2 Usage Segmentation

Over-dimensioning of resources is common amongst application providers as they are often faced with
uncertainty about future usage patterns and conditions. Monitoring actual application usage and
comparing to reserved resources can reveal opportunities for resource repurposing and drive savings.
However, there are circumstances in which application usage can vary from one instance to another.

An application provider faced with reaching scaling limits due to inherent problems with the
application design27 or available resource saturation (whether it is physical or fiscal) has a narrow range
of options open to them. Either they throttle overall usage and discourage new clients from connecting
or they reduce the fidelity of the application so that it has a lighter resource footprint and thus able to
accommodate additional users. There is also of course, the option to mix the two strategies. If there
are different classes of users of an application, then a provider may elect to prioritize resources for
their most important users and reduce the fidelity of experience for the remaining users. For instance,
in CHARITY UC 3.2 (see D1.2), Manned-Unmanned Operations Trainer, there are two classes of users
– Priority and Best Effort. Priority users demand a full fidelity experience and may be undergoing
certification sessions. Best Effort users, on the other hand, would typically be experimenting with the
simulator. We would like to deliver the best experience we can to best effort users when the capacity
is available but step it down when resource availability or resource budget constraints demand. Such
adaptation requires both the application instances and the Orchestrator to be on the same page.

Perhaps in the most straightforward approach, an application stepping down its fidelity and thus
resource requirements, would announce this change to the Orchestrator which would correlate the
new fidelity level with appropriate resource requirements using a lookup table and reify this in the
resource allocation. The work in [36] explores how Real-Time Interactive Applications (ROIA) can be
augmented with a module that enables them to communicate directly to an SDN controller when the
usage dynamic of an application instance requires a change in QoS. The reasoning is that the resource
demands of an application instance can vary according to what activity the user is performing. If in the
exploratory phase of a game, for example, then higher network latencies can be tolerated while lower
latencies are essential when the player enters a first-person shooter phase. The authors propose a
custom C++ library linked into the application under test which communicates real-time application
usage metrics to an SDN Controller through the Northbound interface enabling the controller to
leverage custom rules and make resourcing decisions according to the application needs.

In [37], the authors introduce a Machine Learning component alongside an SDN controller to deduce
correlations between an “arbitrary performance metric from an application” and observed network
characteristics. The metrics, which capture how well the application is performing in attainment of its
goals (e.g., resiliency, responsiveness, availability), is continually reported from the application to the
SDN Northbound interface and fed to the ML component along with current network application usage
with the goal of building a model that can inform the controller of potential resource reallocation
opportunities that could reduce resource consumption without compromising application goals. The
authors assume that applications can be instrumented in such a fashion that potentially complex and
holistic metrics can be efficiently gathered.

There is a difficulty with approaches that depend on application instances announcing their need for
an increase or reduction in resources because they are dynamically toggling features or altering their
fidelity levels. They assume that applications are sophisticated enough to adapt their behaviour
dynamically and consume less resources while still delivering an appropriate quality of experience to
their users. In practice, applications are rarely written from scratch and leverage legacy code and third-

27 Reliance on a shared resource which suffers from scalability constraints for example which acts as a bottleneck.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 101 of 180

party components so that developers can reserve their efforts for their business differentiating
functionality. It is not uncommon to require an application service to be restarted if a significant
configuration change is required such as disabling a key feature or operating at lower fidelity because
the ability to dynamically change is not built into the software and the source code is not available for
modification. In modern service-based architectures, altering the behaviour of one service can have
consequences for its peers and multiple service restarts may be required. It is also possible that a
change to the execution model of an application distributed across the device-edge-cloud continuum
will require the migration of services horizontally across the continuum. These various scenarios are
depicted in Figure 79 which represents a high-level deployment view and possible adaptation scenarios
for a distributed service-based application28.

Figure 79: Application adaptation scenarios.

In Figure 79, we depict a number of different adaptation scenarios that could play out according to
environment circumstances. In each scenario, we depict changes from the default deployment in green

a) The default deployment. This is our starting state and represents the topology and software
component configuration when the application is initially deployed.

b) Different Service Variants. In this scenario, we maintain the same deployment topology
(services currently deployed on the edge stay located on the edge, those running on the cloud
remain running on the cloud). However, we change the configuration for some of the services
so that the overall application resource footprint is modified.

c) Altered Deployment Topology. In this scenario, we do not modify or replace any of the default
service configurations but instead migrate one or more services from the edge to the cloud or
vice versa.

d) Altered Topology and Service Variants. In this scenario, quite a lot of changes occur at once.
Not only do we replace some services with differently configured copies, we also consider
moving the location of a service from the edge to the cloud.

28 Approximately modeled on a real flight simulator application.

SD1

SD2

SE1 SE4

SE2
SE5

SE3 SE6

SC1

SC2

SC5

LOCAL EDGE CLOUD

SC3 SC4

SD1

SD2

SE1 SE4

SE2
SE5

SE3 SE6

SC1

SC2

SC5

LOCAL EDGE CLOUD

SC3 SC4

A) DEFAULT DEPLOYMENT B) SAME DEPLOYMENT TOPOLOGY, DIFFERENT SERVICE VARIANTS

SD1

SD2

SE1 SE4

SE2
SE5

SE3 SE6

SC1

SC2

SC5

LOCAL EDGE CLOUD

SC3 SC4

C) ALTERED DEPLOYMENT TOPOLOGY

SD1

SD2

SE1

SE4

SE2
SE5

SE3 SE6

SC1

SC2

SC5

LOCAL EDGE CLOUD

SC3 SC4

D) DIFFERENT DEPLOYMENT TOPOLOGY, DIFFERENT SERVICE VARIANTS

SERVICE UNMODIFIED FROM DEFAULT DEPLOYMENT

SERVICE MODIFIED FROM DEFAULT DEPLOYMENT

LINK TOPOLOGY UNMODIFIED FROM DEFAULT DEPLOYMENTDatastore UNMODIFIED FROM DEFAULT DEPLOYMENT

LINK TOPOLOGY MODIFIED FROM DEFAULT DEPLOYMENTDatastore MODIFIED FROM DEFAULT DEPLOYMENT

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 102 of 180

6.8.3 Application Aware Orchestration

For an application to be adapted from its existing state, we need to describe the new state and have
the orchestrator move us to it. In a service-based distributed application, it is unlikely that a wholesale
restart of the entire collection of services would be required, and different applications will offer
different opportunities for service rewiring. Some infrastructural services (such as databases, caches,
and webservers) may not be operable at lower fidelity; some may be statefully recording and utilizing
internal state for servicing successive requests and not be amenable to restarts; others may be
perfectly amenable to restarts and migrations.

To cover the adaptation use cases summarized in Figure 79, we need to support the following
functionality from the perspective of the orchestrator:

• Identify the need for adaptation

• Identify the changes needed to result in adaptation

• Allocate any new resources required to satisfy the changes

• Relay new resource details (e.g., IP addresses) to the application

• Deallocate any resources no longer required

With Kubernetes, containers are deployed in pods and their resource requirements (such as the need
for GPU, memory, storage) are relayed to Kubernetes through YAML configuration files. These are then
referenced by Kubernetes in its decision making about where to deploy the pods and how much
resources to reserve. However, the resource needs of an application can vary depending on its
configuration and workload at a given point in time. The configuration can, in turn, depend on the
resource performance and availability at a given point in time. For example, there may be bandwidth
or link latency issues. There may be budgetary limits that require the temporary reining in of resource
usage. Addressing such issues may necessitate an application to adapt to different resource budgets
while keeping Kubernetes in the loop to dynamically alter the profile of resources reserved.

As discussed earlier, depending on application APIs to expose dynamic adaptation functionality
unnecessarily narrows the solution to those applications that have and expose such functionality.
However, there are other problems with this approach. Firstly, it works in opposition to the ‘cattle
versus pets’ ideal in cloud native design which essentially states that we should be able to terminate
any individual service and immediately replace it with another identical instance while maintaining
service continuity. If there has been manipulation of the service configuration using runtime APIs then
identical manipulation would need to occur on any restarted service instances. Secondly, Kubernetes
has no awareness or interest in such manipulation. If the services in a pod are dynamically reconfigured
to use less resources, Kubernetes still holds the originally requested resource allocations which
significantly negates the benefits of instructing the services running in a pod to use less resources. A
more efficient and far more robust approach is to update the static configuration settings for the
services in a pod by requesting Kubernetes to reference new Deployment and ConfigMap files for the
pod. This can initiate a rolling update of the pod by Kubernetes causing the pod to be safely replaced
with a reconfigured pod with a new resource allocation budget.

We introduce an Application Orchestrator that receives alerts from the Prometheus monitoring
platform and directs Kubernetes to update one or more pods to transition those pods from one
resource usage profile to another. This is depicted below in Figure 80.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 103 of 180

Figure 80: Application Orchestrator directing movement of pod from one state to another.

One of the challenges we outlined earlier with service-based architectures is the dependence between
some services such that a reconfiguration of one may necessitate a simultaneous reconfiguration of
another to maintain the platform in a coherent state. Kubernetes pods enable us to group tightly
dependent containers together to facilitate such scenarios; Kubernetes rolling updates29 provide the
means to stand up such container groupings in a safe manner; Kubernetes Services allow us to manage
interdependencies between pods such that pod replacements happen transparently to clients of that
pod30.

The Application Orchestrator is provided by the Application Provider. Its responsibilities are to decide
when instances of an application need to be adapted, how they are to be adapted, and conduct the
necessary dialogue with Kubernetes to affect the adaptation. How the orchestrator makes its decisions
and maps circumstances to a particular choice of Kubernetes configuration files is completely up to
the Application Provider. It can receive alerts and query metrics from Prometheus and track application
specific data such as the number of active users, what they are doing, what their privileges are; track
the overall resource usage (and possibly financial spend) according to the resources allocated to active
users; respond to quality of experience and resource fluctuations observed by the Prometheus Alert
Manager.

In Figure 81 below we contrast the traditional approach employed in Dynamic Software Product Lines
[38] with that proposed in CHARITY.

29 Kubernetes rolling updates allow deployment updates to take place with zero downtime by safely replacing pod instances
with new ones. They can be equipped with readiness checks to ensure the replacement pod is in a healthy condition before
switching over

30 Kubernetes Services essentially sit between pods and clients of those pods. Clients can communicate with pods through
Services. It nicely conceals the pod topology and ip address concerns from clients. A load balancer service is a common use
case in which a single service sits in front of a pool of pods and distributes traffic amongst them. Services play a key role in
rolling updates by concealing the replacement of one instance of a pod with another from users of the pod.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 104 of 180

Figure 81: Application Aware Orchestration.

Dynamic software adaptation, although a component of the CHARITY platform, has not been
integrated with the wider CHARITY platform. It has however, paid close attention to and adopted many
of the technologies employed in CHARITY such as Prometheus, Alert Manager and Kubernetes. This
offers a visible path to integration in which application owners would configure alerts in the CHARITY
platform and have them routed to their Application Orchestrator. From here, a blueprint would be
selected describing the updated pod configuration and a rolling update would be requested from the
AMF which in turn conducts a dialogue with the CHARITY Orchestrator to deploy the updated pod.

6.9 Algorithms for Service Migration

Service migration consists in moving a service across locations, regions, or even infrastructure
providers. It is one of the pillars to ensure the continuity of the service while maintaining the Quality
of Service. A service is composed of many VNFs chained together that offer the said service. The
placement of each VNF is important. For instance, delay sensitive VNFs should be placed at the edge
close to the end users, while delay-tolerant ones can be placed in distant cheap clouds. With service
migration, these VNFs can be moved according to end-users’ mobility, resources shortage, and many
other reasons. While SDN is used to maintain the connectivity between the chained VNFs. It is worth
noting that VNFs migration comes with a cost, service disruption may occur, network resources
overhead due to moving VNFs, a reconfiguration needed to reroute the traffic, and the momentary
increase in resources consumption due to the migration. Service migration patterns can be split into
three principal categories: i) full slice mobility; ii) partial slice mobility, which includes slice breathing,
slice splitting, and slice merging; and iii) slice mobility optimizer, which contains slice shrinking pattern.

In what follows, we will show how selecting triggers of service migration can improve the overall
performance. More specifically, Deep Reinforcement agents are used to learn how to use these
triggers. We will also show how service migration can be improved by optimizing the resources
allocated to the migration.

6.9.1 Service Migration Triggers

In this section, the triggers of service migrations are discussed, it summarizes Addad et al.’s work [39].
These mainly relate to users’ mobility, resources availability, utilization efficiency, cost and energy
reduction, and service reliability and security. Nevertheless, these triggers are non-orthogonal and can
overlap, the mobility action selection process becomes complex and unambiguous.

Figure 82 depicts an overview of the envisioned architecture, incorporating an agent capable of
autonomously selecting triggers and actions for allowing various Network Slice Mobility (NSM)
patterns. It is divided into two separate layers, the Orchestration layer and MEC layer. This layering
model helps manage applications by casting MEC in NFV paradigms, hence complying with ESTI’s MEC
and NFV standards. Considering the MEC-NFV standards, both the Mobile Edge Platform (MEP) and

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 105 of 180

MEC applications (MEC app) are VNFs. Therefore, elements of the NFV domain hosted in the MEC layer,
i.e., the Virtualized Infrastructure Manager (VIM), NFV Infrastructures (NFVI), and VNF Manager
(VNFM), manage their life-cycle. The Mobile Edge Platform Management (MEPM - V) acts as Element
Management (EM) in the NFV architecture, thus providing application management features to the
MEP. The NFV Orchestrator (NFVO) and the Mobile Edge Application Orchestrator (MEAO), in the
Orchestration layer, share service application information and the network service information in the
MEC-NFV domain to provide a reliable orchestration system. It is worth noticing that we omitted the
reference points details between MEC and NFV components for clarity.

The Slice Mobility Decision Maker (SMDM) agent is an additional plugin to MEAO [40]. The main
components of SMDM are the Request Manager (RM), the Learning and Exploration (LE) module, the
Trigger Selector and Exploitation (TSE) module, and the DRL Algorithms Comparator (DAC) module.
The SMDM agent interacts with the MEC layer through the RM module. It retrieves states, selects
decisions such as scaling up/down or migrating MEC apps, and receives rewards for its decisions. The
SMDM agent communicates with the Operation/Business Support Systems (OSS/BSS) for executing
administrative and billing instructions. It also leverages the NFVO to perform the migrations and scaling
operations. In this architecture, the information between the SMDM agent and the MEC hosts transits
via the standardized interfaces of MEAO and MEPM elements.

Three triggers have been used to constitute the state of a MEC host. These are Resource Availability
Trigger (RAT), Service Consumption Trigger (SCT), and Request Overload Trigger (ROT). As it can be
seen on Figure 83, the RAT trigger deals with the aggregate system-level resources related to the
under-laying nodes. It provides details about the CPU, RAM and Disk capacities of the MEC and their
current consumption. The SCT and ROT triggers cope with the performance of a single service. The
main idea behind developing these triggers is to monitor the services themselves instead of watching
only the MEC hosts, allowing bigger flexibility and exploring a more comprehensive range of new
actions such as scale-up/down operations. The details of the triggers, i.e., SCT and ROT, are the CPU
and RAM of each container-based MEC app and their current consumption. Moreover, we can expand
these details to cover different parameters such as the number of requests/MEC app. Appending all
these triggers together from each MEC will result in a feature vector that represents the state of the
edge infrastructure that can be used by RL agents.

Figure 82: Architecture of smart triggers selection for service migration [39].

The state-space defined above allows to obtain a state at each time-step. An action space is needed to
be able to transit from one state to another. The action space is represented by:

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 106 of 180

• no-action, i.e., conserves the current resources distribution.

• migrate from a given source MEC host to a given target MEC host.

• scale up/down various resource types such as CPU and RAM.

Finally, for the reward, it is a combination of the time needed to complete a migration operation and
state of consumption of the resources (e.g., CPU, RAM, …).

Figure 83: Triggers for RL agent [39].

To evaluate DRL agent using the triggers, experiments have been carried out. In this experiment, 10000
episodes are run, changing the resources randomly for MEC host and MEC apps in the underlying layer.
Figure 84 shows the result of two agents, the first is based on DQN and the second on A2C. In Figure
84, the Y-axis represents the rewards, while the X-axis portrays the number of episodes in the training
process. A 100-episodes average is plotted on the same figure (i.e., orange colour). The results showed
the efficiency of the A2C-based agent compared to the DQN-based agent in terms of
average/cumulative rewards and learning stability.

 a) DQN b) A2C

Figure 84: Reward history of SMDM agents [39].

Note that, this work constituted an effort toward transforming the service migration triggers into
intelligent ones that can be used by RL agents. Two agents have been proposed, and many other RL

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 107 of 180

agents can be also leveraged and tailored specifically towards XR services for the service migration,
such as DDPG, TRPO, or PPO.

6.9.2 Service Migration Strategy in the Core Cloud

Based on SDN/NFV technologies, Service Function Chaining (SFC), standardized by the Internet
Engineering Task Force (IETF), is regarded as an important networking concept to provide users with
flexible services provisioning, e.g., XR application functions. Typically, SFC comprises a sequence of
VNFs, and the traffic needs to be steered to traverse these VNFs in a predefined order. As it is essential
to deploy SFC onto the physical network, at present, there has been some research on the SFC
deployment problem to focus on how to reduce network providers’ operational costs, increase
resource utilization rate, and guarantee users’ Quality of Service (QoS). When a SFC request is received,
the management and orchestration (MANO) layer of the network system allocates resources and takes
responsibility for recycling resources after the lifecycle of a request. Furthermore, to avoid QoE and
Service Level Agreement (SLA) violations caused by traffic load variations, MANO should dynamically
adjust the allocated resources of SFC requests. In addition, to save the allocated resources, and adapt
to the users’ mobility, MANO sometimes even must migrate some VNFs of a request. However, the
above adjustment process may result in the unbalanced distribution of physical resources. Different
from previous research work, this work mainly answers the following two questions. A: Will uneven
distribution of physical resources adversely affect subsequent SFC requests and network operators? B:
Can we reduce the potential negative impact of the uneven distribution of physical resources by
migrating SFC requests in the initial service queue?

To model the SFC migration problem into an integer linear program (ILP) problem, the following key
components, involved in the migration process, are considered: 1) Physical machines – represented as
variables indicating their resource availability; 2) SFC instances – represented as variables indicating
their resource requirements and migration costs; and 3) Migration decisions – represented as binary
variables indicating whether to migrate an SFC instance from one machine to another. The ILP is
designed to 1) minimize the total migration cost, 2) maximize the resource utilization across all physical
machines, and 3) ensure sufficient resources are available on the destination machine after migration.
Due to the computational complexity of solving the ILP for large-scale scenarios, we propose a
heuristic-based migration algorithm [41], as shown in Figure 85. This algorithm efficiently
approximates the optimal solution while maintaining acceptable performance. The algorithm
iteratively performs the following steps: 1) identify overloaded machines and underutilized machines.
2) evaluate potential migrations based on benefit-to-cost ratio, considering resource improvement and
migration overhead. 3) select the migration with the highest benefit-to-cost ratio and update resource
availabilities. Repeat steps 1-3 until a stopping criterion is met (e.g., resource utilization threshold
reached).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 108 of 180

Figure 85: Process of aggressive migration scheme [41].

The proposed strategy was demonstrated through extensive simulations. We then evaluate the
proposed strategy through simulations against two benchmark solutions using real-world network

traffic traces and various performance metrics: 1) resource utilization – the aggressive strategy
demonstrates significantly higher and more balanced resource utilization compared to conservative

strategies. 2) service acceptance ratio – the aggressive strategy leads to a notable increase in the
number of successfully accepted SFC requests due to improved resource availability. 3) migration

overhead – while the strategy incurs some overhead due to migrations, the benefits in terms of
resource utilization and service acceptance outweigh the costs. 4) impact on service latency – the work
acknowledges the potential for slight increases in service latency during migration. However, the
overall improvement in resource utilization and service acceptance often outweighs these potential

latency penalties. The performance of the proposed strategy is compared with two benchmark
solutions: 1) BestFit – First, the physical node with the most remaining computational resources is
greedily selected to place the VNFs requested by a request, and then the shortest path between these
nodes is calculated to connect these VNFs in series under the premise of meeting the bandwidth. 2)
CN – CN similarly divides resource allocating into two stages. First, it calculates the importance of each

node according to the degree, betweenness centrality of the nodes, the remaining computational
resources of the nodes, and the remaining bandwidth resources of the links to which the nodes are

directly connected. Then, the VNFs requested by SFC requests are greedily placed on physical nodes
with high importance. Finally, under the premise of meeting the bandwidth requirements, the shortest
path between these physical nodes is calculated to connect the VNFs in series.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 109 of 180

Figure 86: (a) Different acceptance ratios and (b) different link resource utilization for an experimental instance
[41].

We first analyze the simulation results for a single experimental instance. As shown in Figure 86(a), as
time goes by, MANO receives more and more SFC requests, and the physical resources become more
and more strained. Therefore, after a period, the acceptance ratio of SFC requests starts to decrease.
By migrating SFC requests in the service queue at the initial moment through our proposed strategy,
we can make the operators receive more SFC requests, and thus increase the final acceptance ratio.

However, the conservative migration strategy has a negative impact on the final acceptance ratio. We
then analyze changes in physical resource utilization. As shown in Figure 86(b), Figure 87(a), and Figure
87(b), for both “BestFit” and “CN” heuristics, our proposed migration strategy improves final resource
utilization and long-term profit. The “BestFit” heuristic, although the conservative migration strategy
reduces the acceptance ratio of SFC requests, improves the final resource utilization. For the “CN”

heuristic, the conservative migration strategy reduces both the acceptance ratio of SFC requests and
the final resource utilization. Interestingly, however, the conservative migration strategy advances the

time when the physical resource utilization reaches a plateau. From time slot 30 to time slot 44, the
resource utilization of the “Conservative Migration + CN” strategy is higher than the pure “CN”
strategy. Although the resource utilization of the pure “CN” strategy exceeds that of the “Conservative
Migration + CN” strategy from time slot 45, it still needs a long period of time for the pure “CN” strategy
to catch up with the long-term profit of the “Conservative Migration + CN” strategy. From time slot 45

to time slot 60, the gap between the pure “CN” strategy and the “Conservative Migration + CN”
strategy in long-term profit gradually narrows, but until time slot 60, the long-term profit of the

“Conservative Migration” strategy is still higher than that of the pure “CN” strategy.

Figure 87: (a) Different node resources utilization and (b) different long-term profit for an experimental instance
[41].

6.9.3 Network Aware Service Migration

Once the decision of a service migration is made and a target cloud/edge has been chosen, the next
step consists in orchestrating the migration. This consists in moving the VNFs to the new edge/cloud
and also redirecting the traffic to the new VNFs. In order to move these VNFs, network and computing
resources should be available. It also takes some time to do this moving, which can be even a downtime
(i.e., users requests are not served) if it is not a live migration. Therefore, it is important to find the
right balance between how much resources to allocate to this migration versus how long the migration
would take. In order to do this, RL based agents have been investigated to find this right balance. In
what follows, we summarise Addad et al.’s work [39] that was done in this vein. A system is proposed
to host the RL agents. The proposed system, depicted in Figure 88, complies with ETSI-NFV standards.
In the defined system, the MEC layer is controlled through the interaction between the components
of the Orchestration layer and the elements constituting the NFV architecture. Several components of
the Orchestration layer have been omitted to focus on the Smart Network-Aware (SN-A) agent that is
supposed to fine-tune the bandwidth allocation process.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 110 of 180

Figure 88: Architecture of a network aware service migration orchestrator [42].

The Request Handler (RH) module offers to the SN-A agent a technology-agnostic abstraction to access
MEC-layer entities, i.e., public or private cloud platforms. Therefore, regardless of the underlying MEC
platform, the SN-A agent retrieves states, accordingly outputs decisions of bandwidth values, and
receives rewards for each decision. The SN-A agent also receives administrative instructions from the
Operation/Business Support Systems (OSS/BSS) as defined in the ETSI-NFV model. The RH module
must ensure reliable communication and synchronization between the SN-A agent and the MEC layer.
It can achieve this through a message broker functionality, e.g., RabbitMQ, or a standardized
Application Programming Interface (API). In the NFV model, the MEC layer components are hosted on
distributed NFV Infrastructure (NFVI) and would be controlled by one or more Virtualized
Infrastructure Managers (VIMs). The Orchestration layer is hosted separately and communicates with
the NFV domain through the NFV Orchestrator (NFVO) to emit corrective decisions and actions. VNF
Managers (VNFMs) manage life-cycles of the SFC services carried out on VNFs over multiple
administrative domains. Furthermore, users in the users’ layer benefit from the distributed aspect of
computations in the MEC layer, which reduces latency while following end-users’ mobility patterns.

The Training and Exploration (TE) module is responsible for creating identical digital twin environments
used for the training phase of the SN-A agent. Initially, the TE module, through the RH module, gathers
all the bandwidth capacity and latency information between each pair of MEC nodes to obtain a global
knowledge of the distributed infrastructure. A client/server-based IPerf test integrated with the TE
module in this scouting stage is used. This step is a reconnaissance phase that generates most of the
network information that is used as an upper-bound for selecting bandwidth actions. Then, after each
migration decision in the test environment, the TE module reserves the network resources to
successfully complete the SFC migration operations while improving the global bandwidth utilization.
Finally, the used resources are released whenever migrations are completed. Note that a practical
implementation of the SFC migration schemes is used, which basically means that in addition to
ensuring service migration, there was need to also guarantee predetermined order of SFC components
and their respective network and system dependencies. The presented process allows the SN-A agent
to learn how to attribute optimal/near-optimal bandwidth values over time through the TE module. It
should be also noted that it is possible to replicate these offline trial and error achievements in other
environments, e.g., 5G networks, as the training and testing phases share the same input features and
output decisions.

Once obtaining preliminary results, the TE module shares its learned model with the Bandwidth
Allocator and Exploitation (BAE) module to minimize network resource utilization. Therefore, the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 111 of 180

results’ usability can be validated by comparing them to their handcrafted counterpart, defined in [39].
The SN-A agent compares the learned policies against the handcrafted values; if both downtime and
total migration time of the SFC migration increase, the TE module will continue the learning process
without reporting its current findings to the BAE module. Reversely, if the TE finished learning a fully
working model, the SN-A agent will use BAE to forward the accurate decisions to the MEC layer. Finally,
both TE and BAE use the “DRL Algorithms Trainer (DAT)” module, which trains DRL algorithms based
on the received inputs and delivers adequate bandwidth values.

The preliminary results demonstrate that both DQN and DDPG achieved better results compared to
the baseline solution. From Figure 89(a), it can be seen that DDPG is stable compared to DQN and
explores a broader range of actions during the training phase. However, it also indicates that in
convergence, DQN is selecting lower bandwidth values than the DDPG-based agent, i.e., 1,400 KBps.
Based only on action selection, we cannot determine the best approach in terms of resource efficiency.
Thus, we extend our evaluation to cover downtime comparison. In Figure 89(b), the DQN-based agent,
the DDPG-based agent, and the baseline solution downtimes can be viewed in the X-axis, while the Y-
axis presents the downtime in seconds. The downtimes of video-streaming container are larger when
compared to the blank container for all variants. The difference in these results is due to the additional
copies of the network connections status. It can be also seen that the agent based on the DDPG
algorithm outperforms the remaining proposed approaches in terms of downtime. Indeed, the DDPG-
based agent is the only DRL algorithm which reached less than one-second downtime when migrating
blank containers.

a) Selected bandwidth b) Downtime

Figure 89: Performance evaluation [42].

In the context of the XR applications, the amount of bandwidth used by the concurrent services is quite
large. Therefore, carefully reserving, for service migrations, the right amount of bandwidth that
minimizes the downtime is important. Some components of XR services can be very large (e.g.,
terrainDB of UC3.2); migrating such images should be done carefully due to the number of consumed
resources such a migration operation entails, which can disturb many concurrent running XR services.
As such, a balance should be found between preserving the QoS of running XR services and minimizing
the transition time of the service migration while ensuring the continuous functioning of the XR service.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 112 of 180

7 Algorithms for Network Orchestration

7.1 Deterministic Traffic Scheduling in 6G-Integrated Terrestrial and Non-
terrestrial Networks

The emergence of 6G, with its promise of significantly higher data rates, lower latency, and massive
connectivity, is expected to revolutionize communication experiences. One such transformative
application is holography, which enables the creation of realistic three-dimensional projections that
can interact with the real world. However, supporting holography effectively necessitates a robust
network infrastructure that can guarantee the stringent performance requirements of these
applications. Therefore, the growing demand for deterministic networking (DetNet) capabilities in
future communication networks should be highlighted. DetNet guarantees specific levels of
bandwidth, latency, and reliability, which are crucial for supporting mission-critical applications like
remote surgery, autonomous vehicles, and industrial control systems.

Figure 90: Deep reinforcement learning-based network selection and routing for deterministic holographic
services [43].

6G-integrated terrestrial and non-terrestrial networks (6G-ITNTN), as a promising 6G network
paradigm for supporting deterministic holographic services, is attracting much attention. The network
and service orchestration of this network architecture should be also studied and aligned within the
CHARITY framework. For this purpose, the unique feature and attribute of 6G-ITNTN will be
investigated in this section. 6G-ITNTN integrates two key network types: 1) Terrestrial Networks (TNs),
which include cellular communication systems, provide high capacity and wide coverage, making them
suitable for handling large data volumes associated with holographic transmissions within densely
populated areas. 2) Non-Terrestrial Networks (NTNs), which include Low-Earth Orbit (LEO) satellites,
High-Altitude Platforms (HAPs), and Unmanned Aerial Vehicles (UAVs), can provide shorter signal
transmission paths compared to terrestrial (congested) links, leading to reduced latency. They can also
extend network coverage to remote and underserved areas where terrestrial infrastructure might be
limited. By applying DetNet technologies over the 6G-ITNTN, network requirements for holographic
services are supposed to be met, which include: 1) high bandwidth, holographic transmissions involve
vast amounts of data to create realistic and detailed three-dimensional projections. The network must
have sufficient capacity to handle this data flow without compromising quality, 2) low and
deterministic latency, any delays in data transmission can lead to perceivable lags and disruptions in
the holographic experience, requiring strict latency guarantees, 3) tight synchronization, different
components within the holographic system, such as capture devices, display units, and processing
servers, need to be synchronized precisely to maintain coherence and prevent visual artifacts.

In addition, two distinct communication scenarios are considered utilizing NTNs to support holographic
services: 1) backhaul offloading, NTNs are primarily used for backhauling connectivity between edge

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 113 of 180

servers and core networks. This offloads traffic from congested terrestrial links, particularly beneficial
in densely populated areas where terrestrial networks might experience bottlenecks. By utilizing the
low latency and wider coverage offered by NTNs, this scenario helps to reduce overall latency
experienced by holographic traffic. 2) direct communication, this scenario explores the use of NTNs for
direct communication between holographic endpoints, bypassing terrestrial networks altogether. This
approach is particularly suitable for remote locations with limited or no terrestrial network coverage,
enabling the deployment of holographic services in geographically diverse areas.

To guarantee the required end-to-end delays for holographic data streams, a novel Deep
Reinforcement Learning-based Deterministic Network Selection and Routing (DNSR) scheme was
proposed [43]. As shown in Figure 90, this scheme leverages deep reinforcement learning (DRL) to
dynamically select network and route holographic traffic across the 6G-ITNTN with a cycle-specified
queuing and forwarding (CSQF)-based traffic shaping mechanism. In detail, a DRL agent continuously
interacts with the network environment, observing network metrics like link congestion, latency, and
available bandwidth. Based on these observations, the agent learns to make optimal decisions about
routing holographic traffic across different network paths within the 6G-ITNTN. The DRL agent's
decision-making process is continuously refined through trial and error, enabling it to adapt to
changing network dynamics and ensure deterministic performance for holographic services. This work
delves into the unique characteristics of different NTN options, presents the trade-offs between
bandwidth, computational power, and latency. This analysis helps in selecting the most suitable NTN
technology for specific holographic service requirements and deployment scenarios.

Figure 91: Comparison of latency and jitter of sub-flows with hard delay bound between conventional SPR and
DRL-based DNSR [43].

The effectiveness of the proposed DRL-based DNSR approach has been evaluated. The holographic
service requests are randomly generated. For each service request, two flows originated from different
areas should be routed to the same application host. In the source of each flow, we assume three
Kinect v2 sensors are capturing a dynamic scene from three directions at 30 fps. Each sensor provides
point-cloud data with 217,088 points per frame, which gives a total of 651,264 points per frame for
three sensors. For each single point, geometry characteristics are represented by 32-bit X, Y, and Z
values, and color attributes are described with 8-bit R, G, and B values. The calculation for the total
amount of data at 30 fps is 651,264 × (3 × 32 + 3 × 8) × 30 = 2.344 Gbps. Then traditional video coding
techniques are applied to compress the video stream. We assume they can offer lossy compression
ratio of 1:200. The packet length follows the Ethernet standard 1,500 Bytes. Fewer than 50 ms end-to-

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 114 of 180

end latency, are defined as the latency requirement. We compare the proposed scheme to the
conventional shortest-path routing (SPR) scheme. The simulations demonstrate that, compared to
conventional routing methods, the DRL-based scheme significantly improves the end-to-end delay
performance for holographic traffic, as shown in Figure 91. This highlights the potential of DRL in
managing complex network dynamics and ensuring reliable support for time-sensitive
applications such as XR services. As it is important to synchronize the multiple holographic images
from different transmission paths, after the training of the DRL agents with the generated service
requests, the DRL-based DNSR scheme can achieve a deterministic performance with much lower
jitters for the sub-flows with hard delay bound than conventional SPR schemes. This is due to the fact
that the conventional SPR scheme tries to search for the shortest path for each flow, regardless of the
jitter of joint flows within one holographic service. On the one hand, the RL-based routing and network
method will coordinate the scheduling of flows within one single service with the objective of
minimizing the jitter. On the other hand, the NTN platform also advances the deterministic routing
scheme with fewer intermediate forwarding nodes. The flows with deterministic latency and lower
jitter can thus provide a reliable guarantee for the execution of holographic services.

7.2 Deterministic Routing and Scheduling for Mix-Criticality Flows

To support critical data flows generated by XR applications, that the CHARITY orchestration framework
is supposed to support, with bounded latency/jitter and high bandwidth, the IEEE Time-Sensitive
Networking (TSN) and the IETF Deterministic Networking (DetNet) work group have been initiated to
study timing guarantee for critical traffic. DetNet guarantees specific levels of bandwidth, latency, and
reliability for time-critical applications like remote medicine and online education. XR applications
often involve a mix of flows with different criticality levels, requiring the network to prioritize and
manage them effectively. Traditional scheduling methods might struggle to adapt to dynamic network
conditions and changing traffic patterns, potentially compromising the performance of critical flows.
In this work, we investigate the deterministic flow routing and scheduling problem in a CSQF-enabled
DetNet system [44]. Initially, Cycle Queuing and Forwarding (CQF, i.e, IEEE 802.1Qch) is proposed as a
peristaltic shaper which considers two queues on ports to be open and closed alternatively in a cyclic
fashion. It divides the time into different cycles with an equal duration T. A packet sent from the
precedent node in cycle c must be received during the same cycle in the subsequent node and then
transmitted in cycle c+1. Although CQF can control well the delay over each hop (at most two cycles),
the scalability of this mechanism is not enough since it only works well for small networks and assumes
perfect synchronization between nodes. To improve scalability and flexibility, the Cycle Specified
Queuing and Forwarding (CSQF) mechanism has been devised as an emerging standard draft from the
IETF DetNet working group as the evolution of the CQF mechanism. CSQF is proposed to delay packets
with more queues and specify a certain cycle to transmit packets. Inside a CSQF-enabled router, N
queues will be equipped in each output port and ND queues out of N (ND ≤ N) queues are reserved for
time-critical traffic, while the remaining Non-critical (NC) queues are for best effort (BE) traffic. These
N queues transmit packets in a round-robin fashion, that is, during each cycle, only one queue is active
for emitting a packet to the physical link, the other (N−1) inactive queues are closed and enqueue
packets for future transmissions. Note that the number of packets that are enqueued in each inactive
queue is related with the buffer size of each queue, and improper enqueuing will incur packet loss. The
ND time-sensitive queues are dedicated to the time-critical flows by resource reservation. The
assignment of packets to specific queues decides their transmission cycle, and a packet can be delayed
by at most (N−1) cycles. This assignment can be determined by a centralized controller in advance,
while the BE flows without critical timing requirements will not be scheduled in advance by the
controller. When the packets of BE flows arrive at each node, they will be directly inserted into the
(N−ND) NC queues, whose queuing delay is not controllable or deterministic. Note that unlike CQF,
CSQF operates at layer 3, as it allows to specify the routing and cycle scheduling of packets (e.g., with
Segment Routing).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 115 of 180

Figure 92: CSQF-based cycle scheduling of a DN flow [44].

To ensure that no collision or congestion can happen, the controller needs to decide, for each packet,
where and when it will be transmitted in each node, i.e., if a packet is sent in the first available cycle
or delayed by one or more additional cycles before transmission. In Figure 92, we show an example of
how a packet is propagated from node A to node D through node B and C. We assume that 1) the link
delays of dA,B, dB,C and dC,D are one cycle, two cycles and one cycle, respectively; 2) the period of the
flow of interest (FOI) is 2 cycles. Once the packets of FOI are sent from A, they are received at B in the
next cycle (e.g., packet 1 is sent in cycle 1 at node A and received in cycle 2 at node B), since the link
delay between node A and B is one cycle. Upon receiving packet 1 in cycle 2, the controller can decide
to forward packet 1 in the next cycle (cycle 3). However, considering the high traffic load in cycle 3 of
Node B, it is better to choose to delay the packet forwarding by 2 cycles (i.e., CSQF offset), that is,
packet 1 is forwarded in cycle 4. Then it is received at cycle 6 due to two cycles delay between node B
and C. The E2E delay of a packet is calculated as the number of cycles it costs along the path. For
example, the E2E of packet 1 is 7 cycles (cycle 8 - cycle 1). What the controller should accomplish is,
on the one hand, to ensure that the E2E delay of packets are within the delay bounds of this flow; on
the other hand, to avoid the network congestion on certain cycles or edges.

Driven by the huge amount of the ever-increasing multimedia traffic over the Internet, particularly in
the context of XR services, the network administrators need to rely on humans to design, configure
and manage sophisticated and dynamic scenarios, which is not efficient and sustainable. Next-
generation network automation represented by artificial intelligence (AI) based technologies is
proposed to tackle this challenge. Along with the advent of the network programmability of 6G
networks, the AI-enabled paradigm will carry out the intelligent automated network configuration,
optimization, and management in the 6G era. We propose using Deep Reinforcement Learning (DRL)
to address the challenges of routing and scheduling mixed-criticality flows in DetNet [44]. DRL-based
deterministic flow scheduling (Deep-DFS) enables the network to learn and adapt to dynamic
environments, making it suitable for handling complex network scenarios. The DRL process is designed
as follows. Network State Representation: The network state is represented using features that
capture relevant information, such as queue lengths, link capacities, and flow deadlines. Action Space:
The Deep-DFS agent can take various actions, including routing decisions (selecting paths for flows)
and scheduling decisions (determining the order in which flows are transmitted). Reward Function:
The agent receives rewards based on its actions' impact on the network performance. The reward
function is designed to incentivize the agent to prioritize critical flows while maintaining overall
network stability. Learning Process: Through continuous interaction with the network environment,
the Deep-DFS agent learns to make optimal routing and scheduling decisions that maximize the
reward.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 116 of 180

Figure 93: Branching dueling Q-networks based learning process [44].

As shown in Figure 93, in the RL training design, we leverage a branching dueling Q-networks to
generate the policy, we also propose a) a novel delay-aware network representation that incorporates
information about flow deadlines and queueing delays, enabling the agent to make informed decisions
considering both bandwidth and latency constraints; b) action masking to ensure the agent only takes
feasible actions, in other words, restricting the agent from selecting invalid routing or scheduling
options based on the current network state; and c) criticality-aware reward function that explicitly
considers the criticality levels of flows, encouraging the agent to prioritize critical flows while still
ensuring fairness and efficient resource utilization for non-critical flows.

Figure 94: (a) Number of HRT flows scheduled; (b) Utility of SRT flows; (c) Link Usage with different nodes in
ladder topology [44].

We evaluated the performance of Deep-DFS through extensive simulations. The results demonstrate
that Deep-DFS outperforms traditional heuristic-based: heuristic list scheduler (HLS) and existing RL-
based scheduling methods (DRLS) in terms of 1) Flow acceptance rate – Deep-DFS schedules more
flows successfully, especially critical flows, compared to other methods; 2) Average flow completion
time – Deep-DFS achieves lower average completion times for critical flows, ensuring timely delivery
of critical data; and 3) Network resource utilization – Deep-DFS efficiently utilizes network resources
while maintaining fairness among different flow types. As shown in Figure 94(a), Deep-DFS can
schedule more HRT flows than the other two methods in general, specifically, 14.8% more on average
than DRLS, 32.1% more on average than HLS in ladder networks. Since HLS always selects the first
available time slot to transmit the packets on the shortest path, it will derive the minimum latency for
all flows regardless of the flow criticalities and their delay bounds. Therefore, HLS will saturate the
cycles and edges soon, and increase the probability of flow blocking by some fully occupied cycles.
DRLS considers the cycle usage on the edge, it avoids selecting the cycles with high degree to save
more bandwidth for the flows with different periods. However, DRLS still tries to select the first
available cycle for packet forwarding and minimizes the E2E delay of the flow, which conflicts with the
long-term objective of maximizing the number of flows scheduled in this system. To this end, Deep-
DFS redesigns the network state representation and reward function to make delay-aware decisions
on edge and cycle selection, so that the HRT flows are prioritized, and no bandwidth resources are
wasted on minimizing the E2E delay. When the size of the ladder topology becomes larger, Deep-DFS
schedules more flows (39.1% more than HLS on average) in the ladder topology with 10 nodes than
with 6 nodes (29.3% more than HLS on average). This is because Deep-DFS has more exploration space

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 117 of 180

in a larger topology, while HLS only selects the shortest paths to route the flows regardless of topology
size. We also evaluate the average utility of SHR flows with the percentage of BE traffic. We set the
probability of generating BE traffic from 0.2 to 0.36, with HRT and SRT flows are generated with the
same probability. As we can see in Figure 94(b), it is obvious that the average utility will decrease with
more BE traffic inserted in the network. With the increasing BE traffic, the network bottleneck will
come earlier and the utility of SRH flows in the HLS case will decrease a little faster than the other two
methods due to the selection of shortest paths, as discussed above. The link and cycle usages are also
shown in Figure 94(c). The results show that although the HLS method will lead to more cycles with
high traffic load (>60%), the link usage induced by HLS is lower than that of Deep-DFS, which is not
intuitional. This is because, on the one hand, the resources are exhausted in earlier cycles by
minimizing the E2E delay with HLS, though, HLS also stops to schedule flows earlier than Deep-DFS.
That makes the overall link usage of HSL lower than Deep-DFS by 21.3% on average in the ladder
topology. We also find that the link usage decreases slightly with more nodes in the ladder topology
for Deep-DFS, as it prefers to choose a longer route to balance the link load and avoid the bottleneck.

7.3 XR-aware Dynamic Routing Strategy

Routing schemes on SDN are generally classified into two types, namely static and dynamic. In static
routing, existing solutions focus on extending well-known path searching algorithms such as Dijkstra
or Depth First Search (DFS) to find paths from source-to-destination while considering edge and/or
node weights. However, the selected path will not change unless a link failure is detected. In this way,
the route failure or link congestion results either in drop or waiting for packet transmission. To
overcome the drawback of static routing, dynamic routing (also known as adaptive routing) has been
proposed, where routing is performed based on the current situation of the network. Research in
dynamic routing aims at providing more efficient usage of network resources by considering the
current load of each link in the network while making routing decisions.

In a SDN-based routing framework, the SDN controller has three common routing tasks [45]:

• Obtaining the global view of the network: the SDN controller needs to acquire the accurate
global view of the underlying network in order to make routing decisions and compute the
new paths. The global view of the network mainly contains the network topology and link
status information from the switches in the data plane. Various protocols are available for the
SDN controller to discover the network topology and obtain the static link status information
(e.g., hop count, link capability) at the same time since these static information does not
change[46]. To collect the dynamic link status information (e.g., available bandwidth,
utilization, and delay) which do often change, the SDN controller needs to continuously query
the switches at very short intervals to maintain an accurate view. This imposes significant
protocol overhead. To address this challenge, the SDN controller usually implements a periodic
monitoring mechanism to obtain dynamic metrics from each switch at a predetermined rate.
The value of this rate should be selected carefully to balance the trade-off between accuracy
and protocol overhead.

• Computing the routing paths: the SDN controller computes the optimal path(s) for a given flow
using routing algorithms which assume that the global view of the network is available. Based
on the number of output optimal paths between source-to-destination nodes, existing
solutions can be classified into two categories, namely, single-path and multipath. While
single-path routing protocols are designed to discover and use single path between a source
and a link, the multipath routing protocols make use of multiple routes so that the traffic is
balanced among the number of available paths. Therefore, multipath routing provides better
overall performance by allowing better sharing of available network resources.

• Installing the forwarding rules: After computing the optimal paths, the SDN controller needs
to install or update the necessary rules on the forwarding table of each switch using OpenFlow.
The switches then use these rules to forward packets. The mechanism of updating routing

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 118 of 180

information (i.e., who and how to start computing new routes and installing forwarding rules)
is an essential part of any routing protocol. There are three modes of updating operation:

o Reactive (on-demand) mode: the routing path is discovered by the SDN controller only
when a source node needs to send some data to a specific destination node. The nodes
do not maintain table regarding routing information. In this way, this mode consumes
less resources due to the absence of large routing tables. However, it causes
performance delay because of continuous communication between nodes and the
controller.

o Proactive (table driven) mode: the SDN controller installs the forwarding rules to
switches for possible traffic in advance. The advantage of this mode is faster routing
decision and less delay in route setup process. However, each node is required to keep
the routing table up to date which needs large routing overhead.

o Hybrid mode: It combines reactive and proactive techniques. Accordingly, this mode
obtains the flexibility of reactive mode in providing fine-grained control while
benefiting from proactive mode by avoiding significant burden on the controller.

With the emergence of SDN, the flow routing in the network can be flexibly managed and adjusted in
a timely manner according to the current network status. Various existing works have been proposed
in the routing optimization that can be classified into different categories according to the underlying
approach that they use in their algorithms:

• Path searching algorithm – based approach: Existing works in this approach implement the
concept of multipath routing on SDN mainly based on modifying well-known path search
algorithms such as Dijkstra and DFS. The authors in [47] apply Equal-cost multipath (ECMP)
routing scheme to find all available paths on Fat-Tree network topology. ECMP utilizes
modified Dijkstra’s algorithm to search for the shortest path and uses the modulo-n hashing
method to select the delivery path. In [48], a modification of DFS to adapt multipath routing
concept and Open shortest path first (OSPF) distance estimation technique is used to estimate
the minimum distance. Similarly, the work in [49] implements the modified DFS and measures
the paths weight by combining the node, edge, path, and bucket weight using port statistics
available in OpenFlow standard and manual calculation.

• Constraint-based approach: Due to finite resources in the network, main attributes of a routing
algorithm are determined by the flow’s characteristics such as demand or the type of
application data that flow is carrying. These parameters define the constraints in finding
network paths for flows. Most of algorithms simply eliminate the links whose residual static
and dynamic metrics are less than the requested demand and then uses path search algorithms
to find the optimal paths [45][50] . Other existing works [51][52] follow the declarative and
expressive approach which applies Constraint Programming (CP) techniques to find the
optimal paths. Accordingly, the constraint-aware routing problem is represented as constraint
satisfaction and optimization problems in CP. The developers only state the constraints and
optimization statements that the solution should have and do not specify a step-by-step
solution of the problem. The solution is provided by a powerful general purpose CP solver.

• Heuristic algorithm – based approach: Searching for exact optimal paths may be unfeasible in
a reasonable time for a large network. Heuristic routing determines close-to-optimal, although
not always optimal, solutions in a fixed amount of time. Most of existing research on heuristic-
based routing are based on evolutionary algorithms in which among of them, Genetic
Algorithm (GA) and Ant Colony Optimization (ACO) are the most popular used. The work in
[53] developed an evolutionary multipath routing algorithm based on GA to solve the multi-
commodity flow problem while authors in [54] leveraged GA and incorporates a fitness
function inspired by RL for the priority flow admission and routing problems. The solution in
[55] proposed a dynamic routing algorithm based on ACO with three modules to compute
multi paths, select optimal path, and validate the optimal path. Following similar approach,

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 119 of 180

authors in [56] introduced different ant colonies to ACO to calculate multiple paths and reduce
the coincidence rate between these paths.

• Machine learning –based approach: Many studies have proposed to optimize the routing
problem on SDN using ML-based algorithms in order to enhance learning ability from past
experiences and smart route-decision capability. The existing solutions can be classified into
two categories[57]:

o Supervised learning – based solutions mainly consist of three phases: (1) collecting
labeled training datasets, (2) establishing ML-based model in the control plane with
the training data, (3) applying the trained model for dynamic routing. Preparing a set
of adequate data for training is an essential step in this approach. In general, to
construct a training dataset, the network and traffic states are often considered as
input and the corresponding routing solution (normally provided by heuristic
algorithms) are the output. In [58][62], authors introduced NewRoute, a ML-based
dynamic routing Framework, which applies Long Short-Term Memory (LSTM)
networks to estimate future network traffic. NewRoute uses this traffic estimation
together with the network state and corresponding routing solution calculated by a
so-called baseline heuristic algorithm to train the DNN model which is responsible of
selecting optimal routes. In the same principal, Awad et al. [59] proposed ML-based
multipath routing framework which learns the mapping function between network
configuration and their routing solution calculated by a column generations-based
heuristic algorithm.

o Reinforcement learning – based solutions consider the routing optimization as a
decision-making task, the SDN controller as an agent and the network as the
environment. In this approach, the state space contains the network and traffic states.
The action is the routing solution and the reward is defined based on optimization
metrics. Research in[60] proposed a mechanism dubbed DROM, a routing optimization
mechanism based on Deep Deterministic Policy Gradient (DDPG) [61], to realize the
global, real-time and customized network intelligent control and management in
continuous time. A routing algorithm based on Deep Q-Learning in [62] combines NN
with RL via replacing Q-tables with an approximate function trained by NN. Rischke et
al. [63] designed and evaluated QR-SDN, a tabular RL approach, which directly
represents the flow routes in Q-Learning state and action spaces to enable multipath
routing.

In CHARITY, we aim at developing a dynamic multipath routing framework (Figure 95) to improve the
end-to-end communication in the context of the strict requirements of AR, VR, and holography-based
applications. To do so, it is essential to develop mechanisms which can facilitate the scheduling and
routing of latency-sensitive and / or bandwidth-sensitive traffic. The component which shall be in
charge of providing these functionalities is referred to as the Intelligent Traffic Routing mechanism.
The Intelligent Traffic Routing mechanism leverages information regarding the various traffic flows,
the network topology and the network state in order to establish traffic routing and scheduling
functionalities in a manner which is compliant with QoS requirements. The required information which
relates to the traffic flows are their corresponding source, destination and QoS requirements.
Furthermore, the Intelligent Traffic Routing mechanism shall also utilize network traffic predictions
which are provided by the Traffic Prediction mechanism.

The Intelligent Traffic Routing Mechanism leverages SDN to have access to vital information regarding
the traffic and topology of the network. The SDN controller is able to use Northbound APIs to establish
communication with the application plane and Southbound APIs, such as OpenFlow, in order to
communicate with the forwarding devices. Furthermore, the SDN controller examines the network
state and flow-related information and then alters the flow table of the forwarding devices accordingly.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 120 of 180

The Intelligent Traffic Routing Mechanism is designed to leverage RL to conduct these functionalities
in an optimal manner which is in line with the QoS requirements. The centralized control provided by
SDN greatly enhances the quality of RL-based traffic engineering by enabling network policies to be
centrally generated and then transferred to the forwarding devices. The formulation of the agent’s
Action Space is made in a manner which is in accordance with the SDN paradigm. Two different
implementations of the Action Space have been created up to this point. The first one matches
different available paths to pre-defined Actions that the agent may take, in order to achieve multi-path
routing. The second one is a novel approach that we developed that allows the implementation of
weighted multi-path routing in the context of DRL. According to this approach each potential action is
matched to a distinct combination of potential percentages, each of which corresponds to a specific
path. That way, all of the various available paths can be leveraged at the same time. In both of the
aforementioned cases, the action is applied during specified time-intervals.

Figure 95: Dynamic multipath routing framework.

Although there have been numerous scientific endeavours applying RL-based paradigms in the context
of SDN, only a few of them are designed to accommodate multipath routing while taking into
consideration the QoS constraints. CHARITY aims to expand upon the current scientific literature in
regard to developing QoS-aware RL-based structures which support multipath routing. To that end,
the Action Space should be also modelled in a manner which can properly reflect the intricacies of
multipath routing. Furthermore, the State Space shall be implemented in a manner which includes the
traffic predictions. By doing so, it is possible to enable the creation of policies that take into
consideration the future state of the network as well as the ongoing one. Finally, the Intelligent Traffic
Routing Mechanism shall also leverage Graph Neural Networks (GNNs) to enhance the efficiency of
the RL-based routing algorithm. The use of GNNs shall enable the network structures to be
represented in a more accurate way by properly encapsulating the intricate relations which are
established among graph-based structures.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 121 of 180

7.4 Asynchronous Traffic Scheduling for Deterministic Networking

In this section, we delve into the application of asynchronous Time Sensitive Networking (TSN).
Although asynchronous scheduling increases the latency compared to synchronous one, it improves
the network scalability and the link utilization as it does not require a network-wide coordinated time
to schedule the traffic transmission of each stream over reserved time slots. Asynchronous TSN is ideal
for conveying sporadic traffic with real-time constraints and allowing its coexistence with best-effort
streams. It deemed to be of high importance for the support of highly-interactive holographic
communication services, particularly over small-scale networks.

The building block of asynchronous TSN is the IEEE 802.1Qcr Asynchronous Traffic Shaper (ATS), which
is based on the Urgency-Based Shaper (UBS) proposed by Specht and Samii [64]. ATS enhances
traditional asynchronous scheduling, in which a set of First Come, First Served (FCFS) queues, each
associated with a traffic class and a priority level, are arbitrated by a strict priority transmission
selection scheme. Specifically, ATS adds traffic regulation to conventional asynchronous schedulers
cost-effectively. In this way, per-hop traffic regulation is enabled in the network, thus avoiding the
burst size or burstiness of the streams grows when they traverse the network, and the worst-case
delay becomes arbitrarily large [65] .

Given an optimization goal, such as the maximization of the flow acceptance ratio, the flow allocation
involves the optimal selection of one or several paths for every Traffic Class and optimally finding the
configuration for every ATS included in paths. These decisions are subject to the QoS constraints
fulfilment of the incoming flows and all the ongoing flows. For critical flows, typical E2E performance
requisites are the following:

• Frame delay budget: the upper bound for the time the network takes to transport a packet
between the source and the destination.

• Maximum jitter delay: the permitted delay variation in the frame delivery from the source to
the destination.

• Frame loss ratio: the fraction ofthe frames that are lost when they traverse the network.

• Reliability: the probability of network success to carry out the communication and fulfil the
flow’s required service level during its entire lifetime.

Synchronous TSN is suitable to transport performance sensitive traffic with periodic patterns such as
closed-loop control systems in Industry 4.0. Conversely, asynchronous TSN networks perform well in
scenarios where deterministic aperiodic (or sporadic) and best-effort traffics are predominant.
However, the exact number of flows to be allocated, and their features are often unknown in these
scenarios. Thus, the flow allocation in asynchronous TSN networks is a stochastic optimization problem
in nature. There are two approaches for performing the flow allocation in TSN networks, namely offline
and online methods. Online methods compute the flow’s allocation configuration right after it arrives
at the network. Hence, they might run an optimization algorithm to find the allocation for every
incoming flow. Conversely, offline methods compute a long-term configuration for the whole network
for each type of traffic. Offline methods require less state information (i.e., same configuration for all
the flows of a traffic type), and the access control mechanism becomes a lightweight process that only
needs to check whether there are enough resources (links capacities and buffer space) for the incoming
flow. Conversely, online methods offer higher flexibility (i.e., flows with the same traffic type might
have different configurations) and greater agility to adapt to the changing network conditions.

Figure 96 sketches a blueprint of a possible management and orchestration framework for transport
networks based on ETSI ZSM and IETF ACTN (Abstraction & Control of Transport Networks) reference
models. This architecture enables the customer to create and operate Virtual Networks (VNs)
(Transport Network slicing) while hiding the complexity of the underlying physical infrastructure. Also,
it provides cross-domain coordination, which is crucial to ensure the cohesion and satisfiability of the
configurations applied to the distinct domains. For instance, the E2E delay budgets imposed by the
services need to be distributed among the different network domains. A fully centralized (SDN-like)
TSN network is considered given that we are targeting deterministic single digit delays (i.e., less than

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 122 of 180

9ms).

Figure 96: Transport network management and orchestration architecture [66].

In the ambit of CHARITY, a study [67] was conducted where deep RL was employed to solve the flow
allocation problem in asynchronous TSN networks as its features are well suited for that problem. In
contrast to alternative ML techniques, deep RL supports online learning efficiently, which is advisable
for the model adaptability to the changing network conditions. In the same way, the RL exploration
capability also allows adapting the agent’s decision policy. On the other side, deep RL can handle large
state-action spaces as required in medium and large scale TSN networks. Last, RL might act alone to
output the solution directly from the input without any restriction on the optimization objective.

Figure 97: RL for flow allocation and time-sensitive networks optimization [67].

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 123 of 180

Figure 97 shows an online RL-based solution for the flow allocation policy-making in ATS-based
networks [67]. First, every incoming flow allocation request is parsed to determine the flow type and
characteristics (step 1). Then the flow characteristics, along with the traffic predictive data analytics
and the network information and status, are taken by the agent as observations. Next, the agent
outputs an action, which is validated through verifying analytically that the action would not impact
anyhow the deterministic performance requirements of this and already existing flows’ allocations. If
the action is validated, the agent will be positively rewarded, and the action applied. Otherwise, it is
simply not applied. In this way, the analytical models’ information is transferred to the agent, and,
most importantly, the flow allocation process becomes fully reliable.

a) Flow rejection ration b) Worst case delay

Figure 98: ATS-based Backhaul Network (BN) performance [67].

Figure 98(a) depicts the flow rejection ratio as a function of the demanded link utilization at the access
links interconnecting M1 devices and gNodeBs (see Figure 96). Every point shown in Figure 98(a) was
obtained via simulating the arrivals and departures of 1.8M of flows. As observed, the flow rejection
ratio depends logarithmically on the demanded edge link for the setup. It can be seen that the
algorithm offers high rejection probability (penalizes) flows with high data rate demands, e.g., those
with 5QIs 2, 7, and 5 (5G QoS Identifier – as defined in 3GPP TS 23.50131), as it seeks for maximizing
the number of accepted flows. Figure 98(b) shows both the BN delay budget per 5QI (labelled as “5QI
BN Delay Budget”), which is 10% of the E2E delay budget defined in 3GPP standards, and the worst-
case delay per 5QI obtained through simulation (labelled as “Exp. Max. Delay”). As observed, the delay
constraint is met for every 5QI. The maximum delay experienced by each 5QI primarily depends on its
priority level in the TSN network, which is assigned by the algorithm. This fact explains the variability
observed in the obtained maximum delay for the different 5QIs.

In a second work [67] also performed in the context of CHARITY, the allocation problem was also
investigated in 5G backhaul, wherein an offline solution dubbed “Next Generation Transport Network
Optimizer” (NEPTUNO) was proposed. It combines exact optimization methods and heuristic
techniques and leverages data analytics to solve the flow allocation problem. NEPTUNO aims to
maximize the flow acceptance ratio while guaranteeing the deterministic QoS requirements of the
critical flows. NEPTUNO makes the following decisions: i) clustering of 5G streams into IEEE 802.1Q
classes according to the 5GQI value, ii) flow-to-shaped buffer and flow-to-priority assignments at each
ATS of the network, iii) paths selection to interconnect every source and destination, and iv)
distribution of the end-to-end delay/jitter budget of the flows among the hops comprising each path

in the network.

31 For example, 5QI 3, 7, and 80 refer to real-time gaming services, live video, and augmented reality services, respectively.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 124 of 180

Figure 99: Main stages of NEPTUNO for computing the optimal configuration of the network and an example
illustrating the primary configuration parameters for two 5Qis [67].

Figure 99 shows the main steps of NEPTUNO to make its decisions. First, NEPTUNO collects the data
analytics of interest and network state information. Next, it executes the optimization algorithm for
finding the optimal configuration of the network. The first step of the optimization process is to
compute the number of packet replicas required for each 5QI in order to assure its minimum reliability.
It runs, then, a path selection algorithm whose objective is to balance the workload through the
different transit links of BN. To that end, it uses the number of required flow replicas computed in the
previous step and data analytics A1 and A2 as input. After that, it distributes the delay/jitter budget
among the hops of each path chosen in the previous step. Finally, it computes the optimal
configuration for each last hop by solving the MILP problem.

 a) Degree of optimality b) Empirical CDF of the flow rejection when

 varying workload

Figure 100: Performance of NEPTUNO [67].

Figure 100(a) compares the flow rejection ratios offered by NEPTUNO and by the optimal solution
versus the flow arrival rate. As observed, the flow rejection ratio exhibited by NEPTUNO is roughly 20%
above the optimal one for low workloads and 10% above for high workloads. That is because of
NEPTUNO’s operation. More precisely, NEPTUNO configures the last hops to minimize the flow
rejection probability, whereas the configuration of the transit ATSs is set in such a way that the per-
5QI reserved capacity in the last hops can be accommodated. Thus, it seems reasonable that NEPTUNO
performs better for high workloads where the configuration of the bottleneck link (last hop) becomes
increasingly important. Figure 100(b) depicts the empirical cumulative distribution functions of the
flow rejection ratio offered by NETPUNO under different workloads. As observed, the characteristics
and performance requirements of the flows matter. For instance, for the same characteristics of the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 125 of 180

flows (e.g., committed rate and burst size), the rejection ratio increases when the flows’ constraints
are more stringent. Even if NEPTUNO is targeted towards 5G networks, the solution is general enough
to be adapted towards other networks as long as the underlying networking infrastructure supports
ATS switching with priority queues. This also depends on the level of ownership of the network
elements.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 126 of 180

8 Algorithms for Cloud Orchestration

In this section, we will outline design challenges that should be considered while proposing a
computation resource management system that is capable of addressing the requirements of the
different workloads brought by the use cases introduced by CHARITY and to meet the target KPIs
defined in D1.2. The most appropriate resource management techniques need to be selected to ensure
the efficient sharing of distributed computational resources between multiple users. In this regard, an
autonomous orchestration framework, based on Artificial Intelligence (AI), is envisaged to orchestrate
and manage the computation resources. To achieve the objectives and KPIs of the target use cases (as
in D1.2), we look to use a combination of machine learning, cloud computing, micro-services, and the
ETSI Zero-touch network and Service Management (ZSM) concept (reference D1.3 architecture).

AI and Machine learning (ML) techniques (supervised, unsupervised, and deep learning) can be used
primarily for predicting computation utilization, then for resource allocation. The framework is
executed on top of geographically distributed infrastructures consisting of heterogeneous
computation resources. Technology enablers and concepts, such as Multi-access Edge Computing
(MEC) will play an important role in meeting the design challenges, while the use of micro-services
allows for efficient service deployment across MEC environments and clouds. The framework will use
AI and ZSM for the orchestration and management of distributed computation resources across MEC
environments and cloud infrastructure. This should provide the necessary abstraction layer to hide the
resource heterogeneity while optimizing geographical distribution.

In terms of the infrastructure layer, this spans across public cloud infrastructure with virtually limitless
processing power to end-user devices with relatively limited computational capabilities. CHARITY use
cases bring advanced media applications, each with their own computational requirements. According
to this, we must take into account the resource requirements of these applications as any data
processing, either at the device end or in the cloud, must be able to meet the defined KPIs, and QoE.
It is therefore important to cope with the relevant challenges, due to the limitations in terms of both
network and computing capabilities. Effectively, for XR services, compute capacity is not the only issue.
The efficient utilisation of the underlying networking resources is equally highly important. To tackle
this challenge, the resource management system will need to handle load balancing and optimise
resource availability in a more autonomous way. Essentially, the network would use AI and machine
learning to learn and adapt to changes in the network in real time. Automation should extend across
the entire network requiring very little human interaction.

From a cloud service provider (CSP) perspective, support of hybrid, multi-cloud environments is of
fundamental importance to ensure maximum flexibility and to mitigate the risk of vendor lock-in.
Containerized environments will go some way towards ensuring increased portability, as they provide
a streamlined way to build, test, and deploy applications across multiple environments offering
seamless integration with a CI/CD (Continuous Integration/Continuous Development) pipeline.

From here on, we investigate various resource management techniques as well as open-source
software tools to improve the usability and utilisation of resources to efficiently deploy XR applications
across a large heterogeneous resource pool. The key here will be to reduce the need for traditional
cloud infrastructures as much as possible while meeting the KPIs and QoE of the target XR services.

An edge/cloud approach facilitates the AI to be distributed across the network from the core to the
access layer. Such distribution of AI across the network can be beneficial only if it is done in an optimal
manner; i.e., if implemented badly, the necessary data sharing could consume substantial network
capacity. It should then alleviate the low-latency considerations required by the use cases and ensure
that resources are appropriately allocated in real time. The cloud is also essential to creating dynamic
and flexible network environments with real-time updated network performance and management
dashboards.

In this regard, an intent-based automated management and orchestration (MANO) approach may be
essential to achieve optimal network performance allowing for autonomous operations and a zero-
touch operational model. NFV MANO (refer to D1.3) includes all the essential management modules

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 127 of 180

to coordinate network resources in the NFV architectural framework. It includes three Managers: NFV
Orchestrator (NFVO), VNF Manager (VNFM), and Virtualized Infrastructure Manager (VIM).

The NFV Orchestrator is responsible for the on-boarding of new Network Services (NS), VNF-
Forwarding Graph (VNF-FG) and VNF Packages NS lifecycle management (including instantiation, scale-
out/in, performance measurements, event correlation, and termination), global resource
management, validation and authorization of NFVI resource requests policy management for NS
instances. The VNF Manager provides lifecycle management of VNF instances, overall coordination and
adaptation role for configuration and event reporting between NFVI and the E/NMS (Element/Network
Management System). The Virtualised Infrastructure Manager (VIM) controls and manages the NFVI
compute, storage and network resources, within one operator’s infrastructure sub-domain and
handles the collection and forwarding of performance measurements and events.

There are also four repositories that hold different information in NFV MANO: VNF Catalog, Network
Service Catalog, NFV instances, and NFVI resources. The VNF Catalog is a repository of all usable VNF
Descriptors (i.e., a deployment template that describes the requirements of a VNF deployment and
operational behaviour). It is primarily used by VNFM in the process of VNF instantiation and lifecycle
management of a VNF instance, as well as by the NFVO to manage and orchestrate Network Services
and virtualized resources on NFVI. The Network Services (NS) Catalog provides the usable Network
services (i.e., a deployment template for a network service in terms of VNFs and description of their
connectivity through virtual links is stored in NS Catalog for future use). The NFV Instances list holds
all the details about Network Services instances and related VNF Instances. NFVI Resources is a
repository of NFVI resources used for the purpose of establishing NFV services.

8.1 Cloud-Network Integrated Resource Allocation for Latency-Sensitive
B5G

B5G networks are expected to support a diverse range of applications including ultra-bandwidth
demanding service such as XR applications. These applications necessitate guaranteed low latency and
high bandwidth, posing significant challenges for traditional resource allocation schemes. Existing
approaches often struggle to effectively manage the complex interplay between cloud and network
resources, potentially leading to performance bottlenecks and service disruptions.

Figure 101: System model [68].

To cope with this issue, we first model the main components of the system studied: infrastructure,
services, and requests as shown in Figure 101. Based on this, we then model the joint problem of VNF
placement and assignment, traffic prioritization, and path selection by formulating a mathematical
model that jointly optimizes the allocation of 1) computational resources: processing power and
memory within the cloud infrastructure. 2) network resources: bandwidth and transmission time
across the network infrastructure. We propose a near-optimal cloud-network integrated resource

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 128 of 180

allocation scheme that jointly considers both cloud and network resources for B5G service provisioning
to efficiently solve the complex optimization problem [68]. This algorithm iteratively searches for
resource allocation solutions to 1) minimize the overall service execution time, 2) satisfy the latency
requirements of B5G applications, 3) ensure efficient utilization of both cloud and network resources.

The Communication and Computing Resource Allocation (CCRA) problem specified is NP-hard (the
multidimensional knapsack problem can be reduced to it) and finding its optimal solution in polynomial
time is mathematically intractable. One potential strategy for addressing such a problem is to restrict
its solution space using the branch and bound (B&B) algorithm, which relaxes and solves the problem
to obtain lower bounds, and then improves the bounds using mathematical techniques to reach
acceptable solutions. In this algorithm, the solution space is discovered by maintaining an unexplored
candidate list N = {Nt|t ≥ 1}, where each node Nt contains a problem, denoted by Φt, and t is the
iteration number. This list only contains the root candidate N1 at the beginning with the primary
problem to be solved. To reduce its enormous computational complexity, instead of directly applying
the B&B algorithm to CCRA, we consider its integer linear transformation as the problem of N1. Since
the B&B method searches the problem’s solution space for the optimal solution, its complexity can
grow up to the size of the solution space in the worst case. Therefore, finding its optimal solution for
large-scale instances using B&B is impractical in a timely manner, and the goal of this section is to
devise an efficient approach based on the Water Filling (WF) concept to identify near-optimal solutions
for this problem. The first step is to initialize the vectors of parameters and variables in the model.
Following that, two empty sets, R′ and Ω, are established. The former maintains the set of accepted
requests, and the latter stores the feasible resource combinations for each request during its iteration.
Now, the algorithm iterates through each request in R, starting with the one with the most stringent
delay requirement, and keeps track of the feasible allocations of VNF, priority, as well as request and
reply paths based on the constraints. The final steps of each iteration are to choose the allocation with
the lowest cost and fix it for the request, as well as to update remaining resources and the set of
pending and accepted requests. When there is no pending request, the algorithm terminates.

Figure 102: B&B-CCRA accuracy vs. solving time (A), the accuracy of WF-CCRA, DlyMin, and Rnd vs. network size
(B) and request burstiness (C) [68].

The accuracy of the B&B-CCRA and WF-CCRA methods is numerically investigated through extensive
simulations using various performance metrics: 1) average service execution time, 2) resource
utilization, and 3) scalability. The proposed methods are evaluated based on the accuracy of the
solutions they provide. Note that the accuracy of a solution for a scenario (η) is defined as 1−((η
−η⋆)/η⋆), where η⋆ is the scenario’s optimal solution, which is obtained by solving it with CPLEX 12.10.
In Figure 102(a), the accuracy of B&B-CCRA is plotted vs. the solving time for five scenarios with
different network sizes. In this simulation, the number of requests is set to 200. As illustrated, the
accuracy of B&B-CCRA starts at 80% after the first iteration, which is obtained by solving the LP
transformation, dubbed LiCCRA, with CPLEX 12.10 in just a few milliseconds, and increases as the
solving time passes, reaching 92% for all samples after 100 seconds. It proves that this method can be
easily applied to provide baseline solutions for small and medium size use cases. However, the
accuracy growth is slowed by increasing the network size, which is expected given the problem’s NP-
hardness and complexity. In the two remaining sub-figures, the accuracy of WF-CCRA is depicted
against the number of requests and network size. In addition, these sub-figures illustrate the outcomes
of two more approaches, called DlyMin and Rnd. In the DlyMin method, allocations are performed to
minimize delay regardless of other constraints, while Rnd is used to allocate resources randomly to

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 129 of 180

requests. Note that the number of requests in Figure 102(b) is 200, and the number of network nodes
in Figure 102(c) is 20. For each number of nodes or requests, 50 random systems are formed, and the
problem is solved for them using the techniques. It is evident that regardless of network size, WF-CCRA
has an average accuracy of greater than 99%, implying that it can be used to allocate resources in a
near-optimal manner even for large networks. For different numbers of requests, the average accuracy
remains significantly high and greater than 96%. It does, however, slightly decrease as the number of
requests increases, which is the cost of decomplexifying the problem by allocating the resources
through separating requests. For the Rnd method, because it consumes the resources of all tiers
uniformly, its accuracy is slightly above 50%. DlyMin is the least efficient method according to the
results. The reason is that this method always utilizes the costly tier-one nodes to minimize E2E delay.
In conclusion, it is shown that the WF-CCRA algorithm is capable of efficiently allocating resources for
large numbers of requests compared to other approaches.

8.2 Joint Task and Computing Resource Allocation in Distributed Edge
Computing Systems

Distributed task and resource allocation are critical to ensuring application requirements and
maintaining resource efficiency in edge systems when cloud centers are unable to provide in-time
management because of unpredicted communication latency. Meanwhile, compared with QoS like
latency and throughput, quality of experience (QoE) is more critical for user-centric applications such
as holography communication. Besides, conducting resource allocation to satisfy the QoE of
applications rather than achieving extreme QoS is significant for improving resource efficiency,
especially in resource-restricted edge systems. Therefore, to ensure resource efficiency and the QoE
of applications, we investigate the distributed joint task and computing resource allocation problem
for maximizing QoE. In addition to the quantitative correlation between QoS and QoE, we must address
the limited state observation and resource management restrictions in actual systems. For example,
each edge server can only obtain the state of its real-time associated users and can only decide its own
resource allocation.

Figure 103: The framework of distributed task and resource allocation based on MADRL [69].

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 130 of 180

We proposed an approach based on multi-agent deep reinforcement learning (MADRL) [69]. Figure
103 presents the framework of the proposed approach, which mainly consists of centralized training
and distributed execution with the assistance of a remote cloud. Different from existing works that set
each terminal device as an executor, we set the edge server as the management unit to ensure that
the necessary resource state can be acquired, and resource allocation action will be accepted.
Meanwhile, the number of policies that need to be trained is greatly reduced as edge servers are much
fewer than users, which can greatly reduce the policy training cost and parameter synchronization
cost. Besides, the complexities of policy training are greatly increased in multi-agent systems when the
number of agents increases, and it is still challenging to obtain massive agents in one system.
Therefore, our proposed approach can tackle the problem of massive users by setting edge severs as
agents.

To satisfy the state observation constraint and resource capacity constraints, we decompose the
problem into subproblems of task allocation and computing resource allocation. Then, we develop a
two-step approach, including a MADRL-driven task allocation step and a computing resource allocation
step based on sigmoidal programming. To deal with the issue of huge and discrete action spaces in
multi-agent task allocation problems, we designed the approach based on the MADDPG method.
Moreover, to further enhance the exploration during policy training, we integrate the entropy of
massive user task allocation into policy updates. We prove that the resource allocation for maximizing
QoE is a problem of maximizing a sum of sigmoids, making us able to optimize resource allocation using
the sigmoidal programming method. The main workflow of our proposed approach includes the

several steps. First, each edge server observes a local state (𝑂𝑡
ℎ) of its associated users, including the

real-time requests, QoE and QoS correlations, locations, and communication conditions. Then, each

edge server decides task allocations (𝑎𝑡
ℎ) for its associated users with its local state observation based

on the installed policy (i.e., actor). After implementing task allocation actions, each edge server can
identify the users whose tasks are allocated to be processed on it and acquire the corresponding state.
Then, the resource allocation model based on sigmoidal programming optimizes the computing
resource allocation among these users. After completing these procedures, the QoE of every user can
be obtained by edge servers to calculate corresponding rewards (𝑟𝑡). Then, each edge server collects
the experience of the above procedures and uploads it to the cloud server. Once collecting enough
data, an off-policy training process is triggered, and the parameters of actors are synchronized to the
corresponding edge server after each update on the actor. Finally, the distributed policies are gradually
optimized and can work cooperatively to maximize applications’ QoE.

Figure 104: Average system QoE over training process, and under different numbers of users, average middle
point values, and task volumes [69].

Figure 105: Average number of GU and CU over training process, and under different numbers of users, average
middle point values, and task volumes [69].

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 131 of 180

We evaluated the proposed MADRL-based distributed joint task and resource allocation approach through
extensive simulations [69]. The results demonstrate that our proposed approach can effectively establish
distributed collaboration among edge servers by sharing resources to release computing load after policies are
well trained and outperforms other benchmarks in terms of 1) Average system QoE: the proposed approach
achieves a significantly higher sum of applications’ QoE than others, especially when the resources of the edge
system are sufficient to support a large proportion of all applications. 2) Average number of users who give up
due to low QoE (GU) and users whose tasks are forwarded to the cloud (CU): the proposed approach can minimize
the number of users who achieve unacceptable QoE and the number of users whose tasks are forwarded to the
cloud because of inappropriate task allocation actions that break the resource constraints of edge servers,
ensuring the resource utilization of the edge system. As presented in Figure 105, the users who give up because
of unacceptable QoE are mainly attributed to their tasks being forwarded to the cloud, resulting in considerable
latency. Our proposed approach can minimize the number of such kinds of users and support most applications
in the edge system. This is because our approach can allocate tasks to edge servers more appropriately, which
reduces the probability of breaking the resource constraints of edge servers. Figure 104 and Figure 105 reveal
that our proposed approach converges to obviously better performance than other DRL approaches, including
MADDPG, VDN, and IDQN. This is because we employ the policy-based method to address the issue of huge and
discrete action spaces, and we integrate the action entropy of distributed task allocation to enhance exploration.

8.3 Simulations Tools and Experiments on Cloud Resource Management

To build an efficient cloud resource orchestration system, it is important to populate it with efficient
AI-based algorithms and mechanisms that autonomously take decisions on the resource allocation and
service placement. These AI techniques need to be intuitively evaluated, above all in simulated
environments close to real life systems. In this regard, a simulation platform that accurately mimics
K8s microservices clouds is proposed [70]. This platform is aimed to the RL agents. It helps them learn
quickly and converge to a policy that can be used in real environments. The simulated environment is
meant to start the agent learning; it is not meant to replace the real environments. Indeed, after
finding a decent policy, the agent needs to continue learning once it is deployed in a real environment.
Using a simulator instead of using a real deployment would greatly reduce the time needed by the
agent to learn a good policy. Furthermore, as described in Section 2.2, the envisioned AIRO framework
aims to alleviate the scheduling and placement problem in very large system where the number of
possible configurations is huge. In order to evaluate and quicken development of the AIRO framework,
the simulation platform is needed. Therefore, a performance evaluation is carried out to show how
close the cloud-native simulator is to the real deployment.

 a) Real testbed b) Simulated Testbed

Figure 106: Memory consumption per POD [70].

Figure 106 shows memory consumption for each POD. From Figure 106(a) and Figure 106(b), it is clear
that the real and simulated testbeds are almost identical. The only notable difference between the
two is that the real testbed can show random behaviour such as in the case of POD6 and POD9 between
3500s and 4000s. Likewise, CPU utilization of PODs in both testbeds is quite similar. The real testbed
shows also some noisy behaviour compared to the simulated testbed.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 132 of 180

Additionally, an experiment was carried out with the main objective of investigating and evaluating a
resource monitoring demonstration in a cloud native deployment. This experience proves to be
important, as continuous monitoring can be useful to minimize incident response time and ensure that
applications and infrastructure behave as expected. Namely, tracking cluster resources, such as
memory, CPU, storage, and bandwidth, facilitates the process of managing cloud-native environments.
Considering the multi-domain context, Rancher32 was used, taking into account it has support for
multiple multi-cloud providers. This feature allows the facilitation and intermediation of the
orchestration of different domains, which can even be from different providers. Rancher allows not
only the creation but also the orchestration of multiple Kubernetes Clusters, both k3s and k8s, by
installing a cluster agent on all cluster nodes. In this sense, Rancher was used to set up a two-node
Kubernetes cluster that was used to deploy and monitor distinct microservice-based applications.
Additionally, a Prometheus33 and a Grafana34 installation was performed, to provide a simple and
efficient way to visualize several natively supported cluster and pod-specific metrics. By leveraging this
approach, and considering the Prometheus architecture, additional XR-specific instrumentation was
achieved by having additional libraries and Prometheus Exporters to expose virtually all kinds of XR
related metrics.

First, and to evaluate the monitoring resources in a more comprehensive way, three different
(topology-wise and purpose-wise) applications were deployed [71]. These applications were chosen as
reference scenarios for next-generation XR applications, being composed of multiple microservices
and with different topologies. In this sense, it is possible to assess how different applications can be
effectively monitored in a cloud-native environment and how their orchestration can be performed,
to support a new wave of predicting, scheduling, and intelligent orchestration mechanisms. Therefore,
these applications have different primary objectives, such as:

• 2-tier application with two main goals, achieved with iper335 and stress-ng36. The first tool
allows generating realistic network traffic, while the second one allows generating excessive
use of resources.

• 3-tier application with the purpose of providing a simple-yet-realistic standard architecture as
a starting point for demonstration purposes.

• 12-tier application represents the implementation of a web-based e-commerce application, to
showcase a complex and realistic application.

Considering XR services and cloud-native environments, it is important that the availability factor is
taken into account, because downtime values (e.g., due to service migrations) can have a negative
impact on users’ experience. Therefore, it is extremely important that it is possible to analyse and
evaluate the deployment time (the time that a service takes from creation to proper functioning), to
properly assess and regulate performance. However, the deployment time that is usually debated does
not consider the availability of the service, that is, it only measures the time until the pod is running,
and not until the service is fully capable of accepting any type of requests (e.g., some databases need
time to migrate, web servers need time to initialize). Thus, for the validation of this metric, a
component was deployed that allows the calculation of the deployment time based on the event log
performed by Kubernetes, as out-of-the-box metrics reported by Kubernetes (i.e., kube-state-metrics)
neither provide such a mechanism nor account for time spent pulling a container image.

32 https://rancher.com/

33 https://prometheus.io/

34 https://grafana.com/

35 https://iperf.fr/

36 https://wiki.ubuntu.com/Kernel/Reference/stress-ng

https://rancher.com/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 133 of 180

Figure 107 shows this time, in seconds, per pod and per application. These values are an average of
the results obtained in five tests. As mentioned, these are the values per pod, however, the
deployment time of the application as a whole is obtained through the maximum deployment time of
its pods (the pod that took the longest to deploy). It should be also noted that in these tests the images
were not pulled, a process that would lead to an increase in the recorded time.

Figure 107: Average pod deployment time of each application [71].

The recorded values and their differences can be explained by the level of complexity of each
application (the more tiers, the longer it takes to deploy). The first application only has two pods and
does not present relevant differences between the deployment time of the two. The second one has
three deployments, which have dependencies on each other, which explains the difference between
the times of each pod. The last one has twelve pods, also with dependencies between them, which
once again explains the difference in its deployment time. These dependencies between services in
cloud-native applications are quite common and have an impact on numerous operations (e.g., service
migration, scaling), and in this way, microservice-based XR applications are not expected to be
different. Indeed, they are expected to have complex topologies and numerous dynamic constraints.
Thus, their management in (near) real-time is a fundamental aspect of the envisioned orchestration
and should be an aspect to consider.

In order to understand the discrepancy between deployment times between services and applications,
it is important to dissect the various states considered in the deployment process. This process includes
scheduling the pods, pulling the container(s) image(s), and finally creating and starting it. In Figure 108,
it is possible to visualize the various states of this process and their time on each pod.

Figure 108: Stages included in deployment time [71].

Although the pulling state time depends on factors such as image size, this is the state that has the
longest time. However, to counteract this factor, it is possible to configure the pods to only pull the
image when it is not present locally. In this case, only the first time its deployment was carried out
would the image be pulled, in subsequent deployments, this process would no longer be accomplished,

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 134 of 180

since the image would already be present locally, which consequently causes a shorter deployment
time.

Nevertheless, maintaining local images across nodes becomes ever-more difficult when dealing with
multi-node, highly complex cloud-native environments. Prioritizing deployment time at the expense of
complexity is a matter that demands its proper evaluation, and understanding its impact is crucial to
properly adapt cloud-native environments to specific use-cases. To get around this problem, one of
the possibilities is the use of smart caching techniques. The use of these techniques during
orchestration enables the prefetch of the required images of XR services and places them in the nodes
or in close vicinity of the nodes.

In addition to measuring and analysing the deployment time, it is also important to evaluate
mechanisms that allow the visualization of resources (e.g., CPU and memory usage) to predict the
behaviour of applications and infrastructure, to enable active decision making. Thus, the effectiveness
and efficiency of the application can be maintained. In this sense, Grafana provides out-of-the-box
dashboards to visualize such metric. Thereby, Figure 109 and Figure 110 show the visualization of the
graphs obtained from CPU usage and the memory usage of the deployed 12-tier application.

Figure 109: CPU Usage graph from 12-tier application [71].

Figure 110: Memory Usage graph from 12-tier application [71].

The observed graphs show different values for each container, for memory and CPU usage, which can
be explained by the differentiation of each pod function, since there will be pods that need more
resources to perform their functions.

Likewise, a multi-user XR application might behave differently according to multiple factors, such as
the environment, number of instances, users or even different settings of each user. Monitoring the
resource usage at the pod-level and/or application-level is useful to detect early deviations that might
indicate unhealthy situations or be used to predict individual service behaviours. Effectively, through
the deployment of different cloud-native XR applications, more interesting observations can be made
regarding the number of tiers, caching, and availability. These observations can be translated into
recommendations for i) how cloud-native XR applications should be designed (in addition to the
guidelines stated in subsection 6.8) and also on ii) how corresponding clusters should be formed,
configured and orchestrated to ensure a certain level of QoE for the target XR applications. Like the

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 135 of 180

above-mentioned applications we experimented on, XR applications will benefit from deployments
that can take advantage of locally present images. From an orchestration standpoint, clusters should
be also designed in order to take advantage of smart caching mechanisms that can i) make those
images available at different application lifecycle and ii) also minimize the burden of having them
always persisted at every single node of a multi-cluster and multi-node setup. Moreover, clusters
should be considered and designed as highly dynamic environments, capable of seamlessly reallocating
XR applications components taking into consideration runtime factors such as cluster or individual
component resource consumptions and application-specific characteristics (e.g., current number of
users). Ideally, such overall orchestration should not impose changes on XR components themselves,
which are likely not aware of such needs. Nevertheless, by following microservice best practices (e.g.,
single responsibility principle), XR applications can be modelled in a way that facilitate their
orchestration (e.g., using stateless services when appropriated).

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 136 of 180

9 Security & Privacy

CHARITY strongly focuses on the orchestration and scheduling of XR services, so it is crucial to analyse
the security and privacy challenges of delivering these services. Security and Privacy are different
words with different means. They complement each other. On one side, security is the set of
measurements to protect against the risks and loss of information. In another way, privacy is the right
to maintain the information protected.

The following sections discuss the challenges inherent to using XR technology, the security and privacy
requirements of XR applications, and how CHARITY intends to explore the Zero-Trust security model
and the specific Security as a Service Mechanisms to enforce the security of XR applications within the
CHARITY framework.

Moreover, the following sections also present some Cloud-Native security challenges covering the
inevitable need for security at the micro-services level and security in orchestration and scheduling
processes. It also discusses the DevSecOps concepts as increasing relevant security aspects of the next
generation of XR applications. Finally, this section also presents the proposed approaches and
mechanisms considered for integration as part of the CHARITY framework.

9.1 Security of XR Applications, Zero-Trust and Security as a Service

The progress of XR has significantly increased in the past years due to the advances in available XR
hardware (e.g., HMDs), the introduction of more capable sensors, and the advances in computing
graphics technologies. XR-based applications, including AR and VR, combine the real-word with virtual
reality elements to support more immersive experiences in healthcare, education, and industry.
Nevertheless, it is of the utmost importance to understand the challenges of XR technology from a
security and privacy perspective. This technology presents new attack vectors that must be considered,
evaluated and adequately mitigated. Hence, in what follows, we first present the security challenges
inherent to XR applications and then discuss how the recent Zero Trust security model allows
addressing some of these challenges.

9.1.1 Security of XR applications

In the same way as other applications, XR applications are susceptible to different kinds of classical
threats such as malware, DDoS or Man-in-the-Middle (MITM) attacks. Hence, the design of a
comprehensive security strategy should not put those threats aside. Nevertheless, it is relevant to
analyse XR-specific needs and challenges. XR applications typically collect and process large amounts
of sensitive data (e.g., user location, biometrics, medical data, unwanted information about private
spaces, and recording private conversations). For instance, a VR-based training class can reveal several
types of sensitive data, like the trainer’s surrounding environment. Likewise, unintentionally collected
images from private spaces can reveal sensitive information about players in an AR game. This
information, for instance, can be used to understand when a potential target is at home, posing a
danger if these images reach malicious people. Hence, the design of an XR system should consider such
an amount of potentially sensitive data. Unlike other traditional applications, XR applications involve
such an increased amount of data, which from a security perspective, poses a challenge to have the
proper way to process them in, ideally, real-time. Latency, a significant constraint for XR applications,
is also a challenge from a security standpoint. Security approaches tailored for such latency-sensitive
environments should not themselves require additional verification steps such as active network
filtering mechanisms) which would otherwise create a potentially more secure but lower perceived
QoE and ruin the expected immersive experience.

According to [72], XR applications need the following list of security and privacy requirements:

• Integrity: Stored and in transit data must not be tampered with or modified;

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 137 of 180

• Non-repudiation: The responsible entity involved in any data operation must be identified
appropriately, thus avoiding the negation of the action;

• Availability: An adversary should not be able to make the system unavailable;

• Authorization, Authentication and Access Control: All actions must be verified, and only
authorized users or services should perform operations.

• Confidentiality: Unauthorized users must not have access to confidential resources;

• Unlinkability: An adversary must not be able to link and identify users through existing data.

Different approaches exist for each security and privacy requirement. In [72], the authors proposed a
taxonomy with five main categories: Data Protection, Input Protection, Output Protection, User
Interfaces and Device Protection (Figure 111), which considers what security and privacy approaches
should protect. In CHARITY, more than covering all, the main goal is to understand how some of them
can be leveraged and integrated within the overall notion of a more autonomous and intelligent
orchestration platform.

Figure 111: Mapping security and Privacy approaches to XR applications [72] .

Input Protection: The category considers that XR applications could contain sensitive information and
focuses on ensuring the security and privacy of data entered into the XR application. Input protection
techniques relate to input sanitization (e.g., context-based and video-based sanitization). They are
used to evaluate whether there is sensitive information in images and videos entering the application.
The input protection mechanisms also seek to distinguish legitimate inputs from adversarial inputs.

Data Access Protection: Comprises all the techniques used to prevent unauthorised users from
accessing data in storage, in transit and during the computation stage. Data Access protection
approach can range from classical encryption-based techniques, which allow preserving the
confidentiality of data in rest or transit, to Homomorphic encryption schemes, which allow executing
some operations without needing to decrypt the data. Other techniques such as K-Anonymity and
differential privacy also fall into this category to ensure the unnecessary leak of personally identifiable
information.

Output Protection: This covers the security and privacy aspects of protecting data outputs. For
instance, output control policies could provide a guideline for devices to know how to deal with
outputs from third-party applications. Likewise, Least-Privilege approaches to prevent the rendering
of unnecessary elements.

Interacting Protection: Encompasses the approaches used to protect collaborative interactions in a
multi-user environment. They establish boundaries and, for instance, provide confidentiality for
sensitive data in a shared context or non-repudiation to ensure the correct identification of
interactions.

Device Protection: Security mechanisms to ensure only known and authorized users access the XR
devices. Hence, it primarily concerns the identifiability of users, and in a second stage, with the correct

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 138 of 180

authorization and authentication. Device protection approaches include, for instance, secure
authentication mechanisms based on gestures, physiological characteristics or biometric information.

9.1.2 Zero-Touch Network and Service Management (ZSM)

In cloud-native environments, it is crucial to automate detecting and mitigating network anomalies
intelligently. Moreover, since they are typically multi-tenancy environments, a failure in a given
service/level can harm the rest of the environment. Proposed by ETSI, the Zero-touch network and
Service Management (ZSM) specification [73] defines an End-to-End (E2E) management reference
architecture that aims to provide a more flexible and automated approach for E2E service
orchestration in multi-domain deployments. ZSM specification addresses how a set of management
services (and their respective capabilities) can enable a more consistent and standardized method to
manage the entire life-cycle of services spanning over those multi-domain scenarios. Indeed, ZSM
defines the concept of a Management Domain (MD) by encompassing the existing management
functions of each domain and an Integration Fabric to expose such capabilities and facilitate the
communication between service consumers and producers.

Moreover, ZSM reference architecture includes an E2E Service Management Domain (and a Cross-
Domain Integration Fabric) to support the overall E2E orchestration capabilities. Furthermore, ZSM
specification builds upon the principle of closed-loop management automation and feedback-driven
processes (e.g., OODA loop model) to realize fully automated (and intelligent) management
functionalities. Here, we discuss how security, a relevant concern within service orchestration, benefits
from the same principle and reasoning.

In order to enforce and support particular security attributes, the service orchestration regarding to
the security criteria and requirements must be studied. Specifically, putting a greater emphasis on VNF
placement would prevent user data from traveling towards the core of the network, which is deemed
as a safer way to store and process the data. This would also need additional infrastructure, and it
could also have an impact on the overall experience or performance of the XR applications. For
instance, this may be utilized to fulfil the particular statutory or geopolitical needs, or at the absolute
least, it could be utilized to lessen the quantity and distance of user-specific data that are transmitted
via the network in order to maintain secrecy.

9.1.3 Zero Trust Security Model

The previous section provided an overview of the security-related challenges and requirements of XR
applications. This section discusses how the concept of Zero Trust supports the implementation of such
security approaches. In the past, the traditional perimeter security model was based on the “trust but
verify” approach. As long as components and equipment belong to a specific network or segmented
group, they are considered trustworthy. In such a model, network segmentation, used to establish a
trust zone, was assumed to be sufficient. The focus was on whether or not to authorize access to
network segments through perimeter security mechanisms such as firewalls. The perimeter model can
protect against threats from outside but does not prevent unauthorized lateral movement. The implicit
perimeter trust model does also not fit the increasingly complex and dynamic cloud computing
environments [74] .

In such environments, no default trust should occur. Instead, adopting the principle of least privilege
(POLP) [75] and the Zero-trust model for granting only the minimum required privileges, thus, limiting
the visibility and accessibility of assets. Zero-trust model intends to prevent unauthorized lateral
movement as not implicitly or by default trusted zones exist. Moreover, Zero Trust also intends to
provide a more granular and dynamic segmentation of the different resources (i.e., even when
network traffic belonging to the same network should go through a validation process) [76] .

According to NIST, the Zero Trust architecture must follow the basic zero trust principles [77] : data,
assets and services are considered resources; should be secured communications regardless of
whether networks are considered enterprise-owned or non-enterprise-owned; per session resource
access; access depends on multiple aspects including the observable state of the user, the service

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 139 of 180

requesting asset; no resource is inherently trusted, there is always an assessment for each access
request, which implies monitoring the integrity of the resources [77].

Figure 112 further illustrates the difference between the classical perimeter and Zero Trust models.
The perimeter model focuses on communications from outside the Local Area Network (LAN),
assuming the network is trusted. In the Zero-Trust model, the network is never trusted, each
communication should undergo an authentication process. Moreover, in a Service-Based Architecture
(SBA), security policies should be enforced in all network communications between services (and
containers).

Figure 112: Comparison between Perimeter Security Model and Zero Trust Model, adapted from37.

Even though, Zero trust does not aim to replace the security perimeter model but complements it with
a more granular approach to enforcing security policies. Whilst zero trust often refers to authentication
and authorization policy enforcement, in CHARITY, we investigated the idea of having the means for
observing the various XR service components. Including the means for continuous monitoring of all the
network traffic (i.e., both north-south and east-west traffic) within a Cloud-Native environment. Such
a continuous evaluation of network traffic is relevant to timely detect cyber-attacks (e.g., due to
compromised components or API abuses) and thus complements additional policy enforcement
strategies, fulfilling the zero trust overall principle of “always verify”.

9.1.4 Service Mesh

Service mesh is an increasingly widely used solution to address the challenges of complex and
exponential relationships between components [78] . The service mesh concept has gained much
strength in achieving network and resource observability, a key feature within any cloud-native
environment. For instance, Eunji Kim et al. [6] used Istio and Envoy for data collection and complete
visibility into infrastructure resources, network traffic and application behaviour in the environment t.

Service Mesh is an infrastructure layer for handling service-to-service communication without
imposing changes on services [78]. Service Meshes provide a more Cloud-Native and comprehensive
strategy to control network traffic, apply distinct policies and cope with the complexity and dynamism
of service communications. Service mesh addresses such challenges by shifting standard orchestration-
related functions from the application logic to the infrastructure layer. The immediate benefit is
simplifying applications that would otherwise need to include them. Moreover, by abstracting

37 https://goteleport.com/gravitational/images/diagrams/teleport/zero-trust-vs-firewalls-vpns.png

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 140 of 180

standard functions to the infrastructure layer, we might envision a more standard approach to
implementing them.

In summary, service meshes provide the following key features:

• Service Registry & discovery: Mechanisms used to facilitate the discovery and registry of new
components and services.

• Load balancing: The ability to balance network traffic depending on latency and infrastructure
health status.

• Fault tolerance: The ability to redirect requests to an alternate instance when the original is
not available or degraded.

• Traffic monitoring: The ability to monitor all the network traffic and key metrics between the
mesh of microservices.

• Encryption, Authentication and Access Control: Dynamically encryption of network
communications on the fly. Authorize and authenticate network communication between
services.

Although conceptually not restricted, the rise of service meshes emerged with Cloud-native
applications [79] . As shown in Figure 113, a service mesh is constituted of two planes: data and control
planes. The data plane comprises a set of proxies known as sidecars, co-located into each microservice.
The sidecars are proxies that intermediate the communication with other proxies. The combination of
several proxies forms a mesh that intercepts the communication between microservices, meditating
and controlling all network communication and collecting telemetry. Together, they have complete
visibility over all microservice communications and can perform health checking, filtering, routing, load
balancing, service discovery, authentication, authorization, and collecting telemetry. The control plane
is responsible for the overall orchestration of the sidecar's behaviour. In comparison, the proxies
provide the capabilities to configure the components to collect telemetry, enabling observability and
applying routing traffic policies. The Service Mesh concept is used as an architectural approach to
enforce security policies on top of microservices network traffic.

Figure 113: Data and Control planes of a Service Mesh38.

Although this approach has many benefits, they require further investigation. Chandramouli et al.[80]
address this issue in a NIST publication and presents additional guidance on security solutions for
cloud-native environments, specifically, how proxy-based Service Mesh components can collectively
form a security infrastructure to support micro-services.

As discussed in several works, anomaly detection in Cloud-Native environments has new challenges
and relevance. Harlicaj [81] discussed this problem for detecting web-based attacks on micro-services

38 https://www.nginx.com/blog/what-is-a-service-mesh/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 141 of 180

using Kubernetes and Istio. Similarly, in [82], the authors proposed an anomaly detection mechanism
in API traffic to improve its security in microservices environments. Characteristics such as bandwidth
and the number of consecutive requests were analysed, concluding that such a mechanism is more
accurate than a rule-based anomaly detection mechanism. On the other hand, both works do not cover
automated mitigation of incidents (e.g., based on policies).

Two essential widely-used tools that enable the service mesh concept are Istio and Envoy proxies.
Istio39 is a realization of an open-source Service Mesh platform enabling control of how microservices
share data between them. It comprises a set of layered distributed applications providing traffic
management, security and observability at the service mesh level. Istio exposes APIs to enforce access
control at mesh, namespace and service levels. As a result of applying policies over a Kubernetes
network, it becomes possible to configure security for service communications at the network and
application layers. Istio APIs support integration with other components, such as telemetry or policy
systems. Whereas, Envoy proxies bring the sidecar functionalities 40 . Envoy provides built-in
functionality to cope with challenges, such as retries, delays, circuit breakers and fault injection,
dynamic service discovery and load balancing, traffic management and routing, security policies and
rate limiting. Istio offers security advantages through strong identity, transparent TLS encryption,
robust policy, and authentication, authorization, and auditing (AAA) tools to protect services and data
exchanged between them. However, another feature to highlight is its support for heterogeneous
environments, including VMs, Kubernetes and multi-domains setting. In the ambit of this project, Istio
was used to deploy a Service Mesh in a Kubernetes environment to conduct the experimental work.

9.1.5 Policy-Based Control

Not only is it a challenge to efficiently observe and understand, for instance, all the network traffic of
an environment, but it also is crucial to have the means to apply mitigation measures and security
policies effectively. One example of policy enforcement in a cloud-native environment is the
architecture proposed by Loıc Miller et al. [83] that uses Istio combined with the Open Policy Agent
(OPA) to execute policies. Although this architecture presents key ideas focused on the authorization
of communications through the defined policies, it does not present ways of detecting anomalies.

Open Policy Agent (OPA) 41 is an open source, general-purpose policy engine that unifies the
implementation of policy enforcement procedures across IT environments, such as the ones involving
Cloud-Native applications. OPA enables decoupling policy decisions from policy enforcement. Hence,
distinct analytics mechanisms (e.g., AI/ML-based orchestration functions) can support the decision
process. In contrast, OPA can uniformise how those decisions are specified and enforced. For instance,
whereas Istio can be used to support network traffic management, Istio policies are limited to
networks. On the other hand, OPA allows a more comprehensive strategy to implement distinct
policies and have more control over deployments and containers. OPA was used with Istio to enforce
network policies on a Kubernetes environment as part of the experimental work.

9.1.6 Security as a Service (SECaaS)

In line with the underlying idea of CHARITY architecture as a more intelligent and autonomous
framework to address the orchestration challenges of the next generation of XR applications, this
section discusses the benefits of the Security as a Service (SecaaS) model as an approach to support
the security and privacy requirements of XR applications.

From Identity and Access Management (IAM), Information Security, Network Security, Intrusion
Supervision or Encryption, the SECaaS model brings numerous benefits [84][85] . For XR applications,

39 https://istio.io/

40 https://www.envoyproxy.io/

41 https://www.openpolicyagent.org

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 142 of 180

the benefits are manifold. In XR, the capability to seamless process all data is paramount to achieving
the recommended security and privacy requirements. From computing vision algorithms capable of
processing video streams from HMDs and automatically flagging potential bystander-sensitive
information up to the network security methods to detect anomalies and cyber-attacks, SECaaS offers
an opportunity to incorporate such mechanisms without design time intrusions [86] .

The SECaaS model is also a cost-efficient solution that allows next-generation developers and
application providers to shift the onus of security functions to infrastructure providers. This way,
various security and privacy mechanisms could be considered to take advantage of the hybrid
edge/cloud network, compute, and storage resources and the notion of closed loops to have more
autonomous and intelligent security coverage.

9.1.7 Autonomic and Cognitive Security Management

The amalgamation of many of the technologies that were presented during the previous section of this
work shall serve as the building blocks for the emergence of frameworks that are capable of
establishing cybersecurity in cloud-native services. This section is dedicated to exploring such a
framework that is based on paradigms, such as the enabling technologies that were previously
explored. Modern applications are being designed into smaller, more manageable microservices due
to a plethora of requirements, such as portability, scalability, or reliability, in the context of cloud-
native environments. From a security standpoint, such an emerging paradigm raises new challenges in
terms of managing the volume and complexity of cloud-native applications. As such, this demands
intelligent and automated solutions to lower the burden assigned to humans in the context of
managing the security of cloud-native applications. With the objective of establishing autonomous
secure management of resources in various domains, a framework that adheres to the key design
principles of ETSI ZSM was proposed, as depicted in Figure 114. This framework introduces AI-powered
closed loops with various different scopes, from node level to end-to-end and inter-slice level. Thus, it
allows the rapid and effective detection and mitigation of security threats close to the source, which
prevents their proliferation in the network.

Figure 114: Architecture of an autonomic and cognitive security management framework, adapted from [87].

The framework enhances E2E security management capabilities across various domains in a
hierarchical manner. It builds upon the domain vision presented in and introduces AI-driven closed

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 143 of 180

loops with varying scopes, ranging from individual network nodes to end-to-end connections and inter-
slice levels. This fine-grained approach enables efficient and rapid detection and mitigation of security
threats at their source, preventing their spread throughout the network. It is important to note that
this framework aligns with the aforementioned fundamental design principles of ETSI ZSM. It achieves
this by supporting the segregation of security management concerns and adopting a service-based
architecture. This architecture allows authorized consumers to access and utilize the provided security
management services through an integration fabric. The integration fabric facilitates the registration,
discovery, and invocation of security management services. It also facilitates communication between
these services and other management services. The framework leverages historical data and
knowledge generated by various security management services, which are stored and made available
through data services within the same domain or across multiple domains. In the following sections,
we outline the main functional components of this framework. In this architecture, the closed-loop
automation manifests in the context of four functions, Monitoring System (MS), Analytics Engine (AE),
Decision Engine (DE), and Enforcement Service (ES). MS takes responsibility for gathering,
preprocessing, and presenting security-related data obtained from the managed entity. AE offers
services that enable the identification or prediction of potential security anomalies and attacks, as well
as determining the root causes behind observed security incidents, utilizing the collected data. DE
determines the most effective mitigation policy required to address the detected or predicted security
issue, ensuring the desired level of security is maintained. ES allows triggering/updating
implementations of specific Virtual Security Functions (VSFs), such as vFirewall and vIDS through the
management and orchestration platform (MANO). Each network function is associated with a Security
Element Manager (SEM) that will be responsible for managing security within its scope. As mentioned,
in closed loops, cognitive resources are incorporated for security analysis and decision-making.
Furthermore, to increase the cognitive level of the environment, AI/ML techniques can be
implemented in MS and ES.

 In order to have greater security and mitigation at different levels, multiple closed loops can be
coordinated at different levels. These loops are managed and orchestrated by the “Trust & Security
Manager” (TSM),which comprises three functional modules, the “Security Orchestrator”, “Security
Policy and SSLA Manager”, and “Trust Manager”. The “Security Orchestrator” is responsible for
designing, instantiating, and managing the runtime lifecycle of circuits. Security Policy and SSLA
Manager are responsible for violating SSLAs (Security Service Level Agreements) and security policies
defined by external entities. Trust Manager is responsible for the continuous assessment of the
reliability of the network services and associated circuits (this trust is calculated based on the trust
attributes specified in the Trust Level Agreement).

Based on this framework, some open-source solutions that enable zero-touch security management
in environments were analysed. A cloud-native architecture, based on stateless microservices
implemented as containers, is a technology recognized for being suitable for the cost efficiencies,
flexibility, and scalability required in the operation and management of environments. In this sense,
the concept of Platform-as-a-Service (PaaS) emerges, a cloud-native architecture layer that allows
developers to implement, run, and manage different applications without the complexity of
configuring and maintaining the cloud. In this follow-up, Kubernetes appears as a de facto standard for
the implementation and orchestration of applications in containers, which allows scalability, high
availability, and fault tolerance features.

For the implementation of the Fabric Integration features, including facilitating interoperability and
communication between management services (within and between domains), service mesh solutions
such as Istio or Linkerd42 were analyzed, as well as an event streaming platform, like Apache Kafka. On
the one hand, the service mesh will allow the management of traffic between services, while
enhancing security and observability. The event streaming platform will handle asynchronous

42 https://linkerd.io/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 144 of 180

communications between applications and services. In addition, the use of the event streaming
platform is also important for security use cases, including monitoring, analyzing, and reacting to
security threats in real time. In this sense, the use of Istio and Kafka as candidates for integration fabric
implementation was considered.

In the context of management and orchestration platforms, the Open Network Automation Platform
(ONAP)43 and Open Source MANO (OSM)44 are highlighted. ONAP provides a framework for real-time,
policy-driven orchestration, management, and automation of network services and edge computing.
This platform includes different ecosystems, such as POLICY, CLAMP, and DCAE, which together
support closed-loop automation. POLICY provides policy creation and validation capability. CLAMP
designs and manages closed-control loops. DCAE (Data Collection, Analytics, and Events) collects and
analyses data. On the other hand, OSM allows modelling and automating the life cycle of network
functions, network services, and network slices through MON and POL mod- ules. MON leverages
monitoring tools to collect VNFs and infrastructure metrics. POL is a policy management module.
Another tool to highlight is Ansible https://www.ansible.com (accessed on 15 August 2023), which
allows production-level automation in a cloud-native environment, and as such, allows increasing the
automation capabilities of NFVM and NFVO in the management and orchestration of network
functions and services. To provide services in AI and analytics, the Platform for Network Data Analytics
(PNDA) 45 and Acumos AI Platform46 were analysed. The first is a scalable big data analytics platform
for networks and services that brings together multiple technologies (e.g., Kafka). PNDA was used to
enable closed loop control for an ETSI NFV environment. In addition, ONAP is integrating the PNDA as
part of the DCAE to provide its analysis services to the ecosystem. On the other hand, Acumus AI
Platform allows you to create, share, and deploy AI/ML models, capable of packaging ML models into
microservices in portable containers. An “Acumos-DCAE Adapter” is developed to integrate ML models
from an Acumos catalog to the ONAP DCAE. Through these open-source solutions, the architecture
represented in Figure 5 was designed. In such a configuration, Kubernetes can act as VIM and CISM.
NSMF, NSSMF, NFVO, and NFVM functions can be provided by ONAP or OSM. Regarding the closed
loop, MS and AE functions can be implemented using the MON and DCAE modules of OSM and ONAP,
respectively, or directly using open-source monitoring tools (e.g., Prometheus and ELK) and analytics
platforms (e.g., PNDA and Accumos). Integration fabric will collaborate with management functions
deployed as services through the combination of features from Istio and Kafka. In turn, through Envoy
sidecar proxies, the management functions are connected to form a service mesh managed by Istio.
Synchronous communication between services can be enabled via Istio, whereas asynchronous
communication can be performed via Kafka.

9.1.8 Researched Solution Synergy

Establishing cybersecurity in cloud-native services is a multifaceted endeavour where various
technologies and methodologies converge synergistically. This section is dedicated to showcasing how
the various solutions that were explored in the previous sections of this study work in synergy in order
to facilitate the emergence of the features that are required for establishing cybersecurity in cloud-
native services.

Strong Access Controls

Together, ZTA, service meshes, Native AI and SECaaS, and Security Risk Profiling and Mitigation
establish a holistic approach to strong access controls that emphasizes continuous verification, least
privilege, and adaptive responses, enhancing the organization’s overall security posture. ZTA redefines

43 https://www.onap.org/

44 https://osm.etsi.org/

45 http://pnda.io/ (accessed on 15 August 2023)

46 https: //www.acumos.org/ (accessed on 15 August 2023)

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 145 of 180

access controls by adopting a “never trust, always verify” approach, ensuring stringent verification of
identity, device health, and context for all entities. Service meshes complement this philosophy by
providing granular access control mechanisms for microservice-based applications, enforcing secure
communication between authorized services. Native AI and SECaaS continuously monitor behaviours,
promptly adjusting access permissions based on real-time threat detection, and fortifying strong
access controls against evolving threats. Concurrently, Security Risk Profiling and Mitigation assesses
vulnerabilities and risks, guiding access control decisions, and ensuring that access controls align with
identified security concerns, thereby reducing the attack surface.

Network Segmentation

Service meshes ETSI ZSM and ZTA are interconnected elements that contribute to network
segmentation and bolster network security and management. Service meshes excel at securing and
governing communication between microservices within applications, granting service-level
segmentation within the application architecture. ETSI ZSM serves as a comprehensive framework and
standard for automating network and service management, enabling the efficient orchestration of
network segmentation policies and ensuring consistent application of security measures across
network segments. Zero-trust architecture, a security paradigm that assumes no inherent trust, can be
applied to both service-to-service communication (inside service meshes) and network-level access
control (within network segmentation), thereby establishing a robust security posture where trust is
never taken for granted, and access control is meticulous. The convergence of these three concepts
facilitates a unified approach to network segmentation, fortifying security and management
capabilities by securing communication at both the application and network layers while automating
and orchestrating network segmentation.

Secure Communications

ETSI ZSM, ZTA, service mesh, and Shift Left and Static Testing Techniques all play vital roles in
enhancing the security of communications within modern network and application ecosystems. ZSM’s
automation framework ensures that network resources are optimized and security policies are
consistently enforced, actively contributing to the establishment of secure communication channels.
Meanwhile, ZTA, with its fundamental principle of dis- trust by default, strengthens secure
communications through rigorous identity verification and continuous authentication, ensuring only
authorized entities can access and exchange data. Service mesh further reinforces secure
communications by applying authentication, authorization, and encryption mechanisms to inter-
microservice communication within applications, guaranteeing data confidentiality during transit.
Lastly, Shift Left and Static Testing Techniques, when integrated into the development process,
proactively identify and rectify security vulnerabilities, thereby establishing secure communication as
an inherent aspect of application design and development, fortifying the overall security posture
across diverse IT environments.

Data Encryption

Service meshes, Native AI, SECaaS, and Security Risk Profiling and Mitigation all have a role in fortifying
data encryption strategies to bolster data security. Within the context of data encryption, service
meshes serve as a protective layer for data in transit within microservice-based applications, ensuring
secure communication through mecha- nisms like TLS or mTLS. Native AI, when integrated into security
solutions, contributes to data encryption by detecting anomalies in encryption key usage or protocol
utilization, continuously monitoring and adapting encryption policies to evolving threats. SECaaS
providers offer encryption solutions for various data storage and communication channels, simplifying
the implementation of robust encryption measures without requiring extensive in-house expertise.
Meanwhile, Security Risk Profiling and Mitigation efforts identify encryption as a pivotal control to
mitigate specific security vulnerabilities and risks, particularly concerning data protection and
compliance. Collectively, these elements converge to create a comprehensive approach to data
encryption, enhancing overall data security across diverse IT environments.

Continuous Monitoring and Intrusion Detection

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 146 of 180

ZTA, service mesh, Continuous Security practices, Data Preserving and Data Compliance measures, and
Shift Left and Static Testing Techniques all play integral roles in the context of Continuous Monitoring
and Intrusion Detection. ZTA’s fundamental principle of mistrusting all entities aligns seamlessly with
continuous monitoring efforts, where all network activity, both internal and external, undergoes
vigilant scrutiny for anomalies and potential intrusions. Meanwhile, service mesh offers insights into
communication patterns within microservice applications and enforces security policies like
encryption, contributing to enhanced intrusion detection capabilities. Continuous Security practices
encompass the ongoing assessment of security, including monitoring network traffic, system logs, and
user activities to swiftly identify and respond to threats. Data Preserving and Compliance measures
help safeguard data integrity and compliance during monitoring, ensuring data remain secure and
compliant. Lastly, Shift Left and Static Testing Techniques, integrated into the development process,
serve to pre-emptively uncover and address vulnerabilities, reducing potential intrusion points and
bolstering the overall efficacy of Continuous Monitoring and Intrusion Detection. Together, these
elements collectively fortify an organization’s security posture by providing the necessary tools and
strategies for detecting, mitigating, and preventing security breaches in a continuously evolving threat
landscape.

Process Automation

ETSI ZSM, service mesh, Shift Left, and Static Testing Techniques for Enhancing Security are
interconnected in their roles within process automation, particularly in the context of bolstering
security within organizational workflows. ETSI ZSM, functioning as a network and service management
automation framework, streamlines processes by efficiently allocating resources and enforcing
security policies, minimizing manual intervention, and mitigating potential human errors. Service mesh
further enhances automation by automating security aspects of microservice-based communication,
ensuring consistent policy application across services, and simplifying complex application
environments. Shift Left and Static Testing Techniques, integrated early in the software development
lifecycle, contribute to process automation by automating security testing, swiftly identifying and
rectifying vulnerabilities before deployment, expediting security assessments, and reducing the
necessity for manual code scrutiny. Together, these components drive process automation by
automating various network, service, and security tasks, ultimately enhancing efficiency, consistency,
and security throughout an organization’s operations and development lifecycle.

Vulnerability Management

Security Risk Profiling and Mitigation, Shift Left, and Static Testing Techniques for Enhancing Security,
Continuous Security, Data Preserving, and Data Compliance are intricately interwoven with
vulnerability management, creating a cohesive strategy for identifying, prioritizing, and mitigating
vulnerabilities. Vulnerability Identification is fortified through early detection in the software
development lifecycle (Shift Left) and ongoing vulnerability scanning and real-time monitoring
(Continuous Security). Security Risk Profiling aids in prioritization based on the risk posed by identified
vulnerabilities, directing vulnerability management efforts toward the most critical threats. Mitigation
strategies benefit from Shift Left practices, ensuring security controls and configurations are rigorously
tested before deployment, whereas Data Preserving and Data Compliance measures safeguard
sensitive information during mitigation. Continuous Monitoring offered by Continuous Security
maintains a vigilant stance, identifying new vulnerabilities and promptly incorporating them into
vulnerability management processes. Together, these elements establish a comprehensive approach
to vulnerability management that efficiently addresses vulnerabilities, prioritizes them based on risk,
and maintains data security and compliance throughout the vulnerability lifecycle

Configuration Management

Shift Left and Static Testing Techniques for Enhancing Security, in conjunction with ETSI ZSM, play a
pivotal role in fortifying Configuration Management’s security and reliability aspects. Shift Left
practices advocate the integration of security assessments into the early stages of the software
development lifecycle, employing static code analysis and other static testing methods to uncover
vulnerabilities and security flaws. These techniques are equally applicable to Configuration

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 147 of 180

Management, where they ensure the early detection and remediation of security-related issues in
configuration files and settings. Meanwhile, ETSI ZSM automates network and service management,
encompassing configuration management for network devices and services. This automation
facilitates the consistent application of security configurations, such as access controls and firewall
rules, reducing the risk of misconfigurations that could lead to security breaches. Collectively, Shift
Left, Static Testing Techniques, and ETSI ZSM synergize to bolster Configuration Management, ensuring
that security configurations are validated, accurate, and compliant, thus enhancing the overall security
and reliability of IT environments.

Continuous Security Testing

Security Risk Profiling and Mitigation, Shift Left and Static Testing Techniques for Enhancing Security,
Continuous Security, Data Preserving, and Data Compliance are all interconnected components of
Continuous Security Testing. Security Risk Profiling and Mitigation contribute by assessing
vulnerabilities and prioritizing them based on risk, guiding testing efforts to address the most critical
threats. Shift Left practices ensure early integration of security testing, including static code analysis,
into the development process, reducing vulnerabilities introduced in code changes. Continuous
Security encompasses real-time threat detection and vulnerability scanning during testing, ensuring
continuous assessment of security. Data Preserving measures secure data during testing whereas Data
Compliance ensures regulatory adherence. Together, they form a holistic approach to maintaining an
ongoing, effective, and compliant security testing process, minimizing security risks and vulnerabilities
throughout the software development lifecycle.

9.2 Cloud Native Security Mechanisms

XR applications are moving towards micro-services-based architectures and Edge/Cloud environments.
Despite the benefits and flexibility, the rise of (Cloud-Native) micro-services-based architectures is not
without its challenges. They are composed of numerous and dynamic components that need to
communicate and interact with each other. Hence, one of the biggest challenges is dealing with the
exponential and complex relationship between all the moving parts forming a Cloud Native application.

In addition to the specific security and privacy discussed in section 9.1.1, it is crucial to understand how
the security of XR applications fits into (secure) Cloud-Native environments. XR applications have
specific traits such as the vast amount of involved data (e.g., audio/video), low-latency requirements
or the multi-user and network bandwidth-hungry scenarios requiring tailored security mechanisms.

Thus, the following section provides an overview of some of the security best practices and research
challenges that focus on bringing security to cloud environments and how that supports the required
security of XR applications. Moreover, for each challenge, we discuss candidate open-source enablers
that support their realization. Finally, this section provides an overview of the proposed security
mechanisms, including a proposal for an Autonomic and Cognitive Security Management Framework
for detecting and mitigating anomalies, the proposed approach for a Cloud-Native anomaly detection
and mitigation framework, and the conducted experiments.

Cloud-Native Security splits into four key levels, the so-called “4C’s” of Cloud-Native Security47: the
security of Cloud, Clusters, Containers and Code security.

Cloud/Datacenter security concerns the security of the underlying infrastructure. Here, it is essential
to protect and control, amongst others, the (network) access to the environment APIs, Cloud Provider
APIs, and infrastructure. Indeed, Cloud Environments rarely target a single user but rather a highly
complex multi-tenancy environment. Hence, it is crucial to guarantee that only authorized people have

47 https://kubernetes.io/docs/concepts/security/overview/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 148 of 180

access to this environment and, consequently, access to some data or service. Proper authentication
and granular authorization play a vital role in this.

Moreover, it is crucial to adopt the best practices and act according to legislation, never forgetting that
a geographically distributed environment must comply with regulatory standards under industry
guidelines and local/national/international laws. For instance, in European Union, GDPR and the
ePrivacy directive ensure that the involved actors and parties follow security and privacy best practices.
Cloud compliance ensures that cloud computing services meet compliance requirements being
valuable and necessary in the case of personal processing information. In that regard, security
assessments, such as Kube-bench, can be used to attest compliance by running automated tests.
Alternatively, InSpec also allows testing and auditing infrastructure (and applications).

Cluster security includes the protection of the components of the cluster, for instance, by leveraging
authentication and admission control mechanisms or network policies for controlling clusters, nodes,
and pod communications and operations. To help in accomplishing that, the Center for Internet
Security (CIS) Benchmarks provides guidelines for cybersecurity best practice recommendations for
configuring Kubernetes with the primary goal of providing tailored recommendations for Kubernetes
to improve security against threats. Then, tools such as Kube-bench48 or InSpec allow the automation
of such security assessments. Kube-bench allows automating the implementation of CIS Benchmarks,
offering recommendation actions for detected issues. Similarly, InSpec allows the automation of
infrastructure testing, auditing of applications and policy conformance. InSpec compares the actual
state of the systems with the desired state, and whenever it detects deviations, it issues a report.
Likewise, Kube-hunter49, a vulnerability scanning tool, aims to increase the awareness and visibility of
security controls in Kubernetes environments.

Furthermore, Cloud-Native environments require continuous security, meaning it is not enough to
worry about security before the execution. It is equally important to pay attention to security during
the lifetime of the environment by analysing and monitoring, for instance, unauthorized access and
anomalous traffic. Even so, such security monitoring should not compromise the availability of the
applications, especially in XR, where such mechanisms should not affect the already strict latency
requirements of XR applications. Finally, tools such as Zabbix50 or Falco51 are pivotal in monitoring
many aspects of the Cloud-Native environment and XR applications. Falco, a Cloud-Native threat
detection engine, relies on monitoring Linux system calls in containers to flag unexpected behaviours
(e.g., privilege escalation events, suspicious read/writes to known directories). To accomplish that,
Falco uses a set of predefined rules. Similar, Curiefense is a Cloud-Native tool capable of monitoring
HTTP API requests, allowing the detection of suspicious behaviours on HTTP traffic between
containers.

Container security refers to implementing the best security practices to ensure containers are free
from vulnerabilities, for instance, by using signed and trustable images or avoiding running containers
as privileged users. Container vulnerabilities may be due to incorrect infrastructure configurations,
vulnerabilities inherited from container base images, or the application code itself. Tools like
Curiefense52 or Falco53 are fundamental for detecting and quickly reporting unexpected application
runtime behaviours. Despite all the benefits of such tools, most existing tools mainly rely on the usage

48 https://github.com/aquasecurity/kube-bench

49 https://kube-hunter.aquasec.com/

50 https://www.zabbix.com/

51 https://falco.org/

52 https://www.curiefense.io/

53 https://falco.org/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 149 of 180

of hard-coded rules, which might limit them to only known vulnerabilities. Moreover, XR-specific tools
that could help to detect XR-specific code and behavioural vulnerabilities are still an open challenge.

Code security encompasses methods to automate the testing of source code for known security issues
or the automated verification of insecure third-party libraries. In this regard, different tools can help
to automate the process and vulnerability search. Static Application Security Testing (SAST) tools, like
Checkmarx54, allow verifying source code against known harmful patterns that risk the security of
applications. Likewise, Dynamic Application Security Testing (DAST) tools OWASP Zed Attack Proxy
(ZAP55) can be used to dynamically assess the running behaviour of applications as an attacker would
do. Moreover, tools like Microsoft Credential Scanner (CredScan) help identify credential-related
vulnerabilities and leaks in source code and configuration files (e.g., default passwords, SQL connection
strings or exposed private keys). Likewise, tools such as WhiteSource Bolt56 or Black Duck57 are pivotal
in searching for known vulnerabilities.

Hereunder, we introduce three approaches for protecting cloud-based XR applications. The proposed
solutions, namely the FortisEDoS Framework, Autonomic and Cognitive Security Management
Framework, and Security as a Service for Service Mesh aim to enhance security and resilience by
implementing security measures at different levels, using deep learning-based DDoS detection models,
and relocating microservices. These approaches aim to provide uninterrupted and high-quality XR
experiences while mitigating the impact of security threats like DDoS attacks.

9.2.1 Autonomic and Cognitive Security Management Framework

Modern XR applications are being designed into smaller, more manageable microservices for different
reasons, such as portability, scalability, or reliability, considering the Cloud-Native environments. From
a security standpoint, such an emerging paradigm raises new, open challenges in managing the volume
and complexity of Cloud-Native applications. As such, this demands intelligent and automated
solutions to lower the burden assigned to humans on managing the security of Cloud-Native
applications. With the objective of autonomous security management that enables hierarchical end-
to-end security self-management resources in various domains, a framework that adheres to the key
design principles of ETSI ZSM was proposed, as shown in Figure 115. This framework introduces AI-
powered closed-loops with different scopes, from node to end-to-end and inter-slice levels. Thus, it
allows the rapid and effective detection and mitigation of security threats close to the source, which
prevents their proliferation in the network.

In this architecture, the closed loop is represented by four functions, Monitoring System (MS),
Analytics Engine (AE), Decision Engine (DE) and Enforcement Service (ES). ES allows triggering/updating
implementations of specific virtual security functions (VSFs), such as vFirewalld, vIDS, through the
management and orchestration platform (MANO). Each network function is associated with a Security
Element Manager (SEM) that will be responsible for managing security within its scope. As mentioned
earlier, cognitive resources are incorporated into closed loops for security analysis and decision-
making. Furthermore, AI/ML techniques can be implemented in MS and ES to increase the cognitive
level of the environment.

In order to have greater security and mitigation at different levels, multiple closed loops can be
coordinated at different levels. These loops are managed and orchestrated by the “Trust & Security
Manager” (TSM), which comprises three functional modules, the “Security Orchestrator”, “Security
Policy and SSLA Manager”, and “Trust Manager”. The “Security Orchestrator” is responsible for
designing, instantiating, and managing the runtime lifecycle of circuits. The Security Policy & SSLA

54 https://checkmarx.com/

55 https://owasp.org/www-project-zap/

56 https://www.whitesourcesoftware.com/free-developer-tools/bolt/

57 https://www.blackducksoftware.com/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 150 of 180

Manager is responsible for coping with violations of SSLAs (Security Service Level Agreements) and
security policies defined by external entities. The Trust Manager is responsible for the continuous
assessment of the reliability of the network services and associated circuits (this trust is calculated
based on the trust attributes specified in the Trust Level Agreement).

Figure 115: Architecture of envisioned Autonomic and Cognitive Security Management framework [87].

Based on this framework, some open-source solutions that enable zero-touch security management
in environments were analysed. A cloud-native architecture, based on stateless microservices
implemented as containers, is a technology recognized for being suitable for the cost efficiencies,
flexibility and scalability required in the operation and management of environments. In this sense,
the concept of Platform-as-a-Service (PaaS) emerges as a cloud-native architecture layer that allows
developers to implement, run and manage different applications without the complexity of configuring
and maintaining the cloud. In this follow-up, Kubernetes appears as a de-facto standard for the
implementation and orchestration of applications in containers, which allows scalability, high
availability, and fault tolerance features.

For the implementation of the Fabric Integration features, including facilitating interoperability and
communication between management services (within and between domains), Service Mesh solutions
such as Istio or Linkerd58 were analysed, as well as an event streaming platform like Apache Kafka. On
the one hand, the service mesh will allow the management of traffic between services while enhancing
security and observability. The event streaming platform will handle asynchronous communications
between applications and services. In addition, the use of the event streaming platform is also
important for security use cases, including monitoring, analysing and reacting to security threats in
real-time. In this sense, the use of Istio and Kafka as candidates for Integration Fabric implementation
was considered.

58 https://linkerd.io/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 151 of 180

In the context of management and orchestration platforms, Open Network Automation Platform
(ONAP)59 and Open Source MANO (OSM)60 are highlighted. ONAP provides a framework for real-time,
policy-driven orchestration, management and automation of network services and edge computing.
This platform includes different ecosystems, such as POLICY, CLAMP, DCAE, which together support
closed-loop automation. POLICY provides policy creation and validation capability. CLAMP designs and
manages closed control loops. DCAE (Data Collection, Analytics and Events) collects and analyses data.
On the other hand, OSM allows modelling and automating the life cycle of network functions, network
services and network slices, through MON and POL modules. MON leverages monitoring tools to
collect VNFs and infrastructure metrics. POL is a policy management module. Another tool to highlight
is Ansible, which allows production-level automation in a cloud-native environment, and as such,
allows increasing the automation capabilities of NFVM and NFVO in the management and
orchestration of network functions and services.

From a monitoring point of view, some tools have already been mentioned in Section 5.1.2. Therefore,
in this context, a combination of Prometheus, Elasticsearch, and Grafana was adopted in order to build
a more efficient monitoring system.

To provide services in AI and analytics, Platform for Network Data Analytics (PNDA)61 and Acumos AI
Platform62 were analysed. The first is a scalable big data analytics platform for networks and services
that brings together multiple technologies (e.g., Kafka). PNDA was used to enable closed-loop control
for an ETSI NFV environment. In addition, ONAP is integrating the PNDA as part of the DCAE to provide
its analysis services to the ecosystem. On the other hand, Acumus AI Platform allows you to create,
share and deploy AI/ML models, capable of packaging ML models into microservices in portable
containers. An “Acumos-DCAE Adapter” is developed to integrate ML models from an Acumos catalog
to the ONAP DCAE.

Figure 116: Architecture of the framework with the enablers and tools [87] .

Through these open-source solutions, the architecture represented in Figure 116 was designed. In such
a configuration, Kubernetes can act as VIM and CISM. NSMF, NSSMF, NFVO and NFVM functions can
be provided by ONAP or OSM. Regarding the closed loop, MS and AE functions can be implemented

59 https://www.onap.org/

60 https://osm.etsi.org/

61 http://pnda.io/

62 https://www.acumos.org/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 152 of 180

using the MON and DCAE modules of OSM and ONAP, respectively, or directly using open-source
monitoring tools (e.g., Prometheus and ELK) and analytics platforms (e.g., example, PNDA and
Accumos). Integration Fabric will collaborate with management functions deployed as services through
the combination of features from Istio and Kafka. In turn, through Envoy sidecar proxies, the
management functions are connected to form a service mesh managed by Istio. Synchronous
communication between services can be enabled via Istio, while asynchronous communication can be
performed via Kafka.

9.2.2 Cloud Native Anomaly Detection and Mitigation (FortisEDoS Framework)

XR services include VR, AR, and MR. They are highly sensitive to delays, require significant bandwidth,
and process a large amount of data. Network slicing plays a key role in deploying XR services on the
cloud, but it also poses significant security challenges due to the dynamic nature of slicing and the
sophistication of cyber threats. Effectively, to efficiently use the cloud resources allocated for a XR
application, one can change the number of replicas and the cloud resources such application uses to
handle them. However, in such conditions, the application becomes vulnerable to EDoS (Economic
Denial of Sustainability) attacks, whereby an attacker may flood the relevant servers with a huge
number of requests, and causes the need for scaling up the resources. Then, the illegitimate requests
are reduced and this cycle is repeated multiple times. In such a situation, the service providers face
economic damages. To solve this problem and not let an adversary affect the functionality of the
applications as well as the cost they incur, a Cloud Native Anomaly Detection and Mitigation method
is proposed in this section.

Figure 117: Boosting Anomaly Detection Accuracy for XR Applications' EDoS Mitigation with AI.

As stated earlier, XR services, especially VR applications, heavily rely on real-time data transmission
and are highly sensitive to latency. Thus, they are vulnerable to DDoS attacks that can disrupt real-time
data delivery, causing severe degradation or interruption of the XR experience. FortisEDoS’s deep
learning-powered DdoS anomaly detection model, CG-GRU, can be adapted to recognize patterns of
DdoS attacks targeting network slices hosting XR services [88][89]. FortisEDoS is a cutting-edge
platform that utilizes a deep learning-powered forecast-based anomaly detection model called CG-

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 153 of 180

GRU. This model is designed to accurately identify any malicious scaling requests that may be made to
the system. The platform leverages Convolutional Neural Networks (CNNs), Graph Neural Networks
(GNNs), and Recurrent Neural Networks (RNNs) to extract both temporal and spatial dependencies in
the data. By leveraging spatio-temporal correlations, it can accurately detect and mitigate these
attacks in real-time, ensuring uninterrupted XR experiences. Also, FortisEDoS’s utilization of transfer
learning can enhance the security of newly deployed XR slices by leveraging insights gained from
previous deployments, thereby improving the resilience of XR services against evolving security
threats.

Furthermore, the integration of Reinforcement Learning (RL) models holds promises for enhancing
anomaly detection accuracy tailored to the requirements of XR applications, such as minimizing delay
and optimizing resource capacity. This augmentation underscores security mechanisms' adaptive and
responsive nature in catering to the dynamic demands of XR environments (Figure 117).

At each time step, the values of the Virtual Network Function's (VNF – composing the network slice
running the micro-services of the XR application) metrics are analyzed, and if any anomalies are
detected, they are flagged as anomalous. This flagging process is based on a dynamic thresholding
technique, whereby the global forecasting error is calculated, and if it exceeds the threshold, then the
corresponding metric is considered anomalous. In case of any malicious scaling requests, the system
will tag and refuse the scaling operation as malicious. This advanced anomaly detection system ensures
that FortisEDoS remains a secure and reliable platform for all users.

This framework could incorporate various approaches, such as transferring affected micro-services to
safer edge cloud nodes and rejecting the auto-scaling operation. To prevent adversarial attacks against
ML models, it would be beneficial to use MTD-based robust ML models. To enhance the accuracy of
the EDoS detection and mitigation framework, it is a good idea to include metrics that are relevant to
the cloud infrastructure. Also, connecting with the XR service provider can make the framework even
more effective by providing data on significant changes in XR service consumption patterns. For
example, when an EDoS mitigator needs to auto-scale the operation, it can use the trained model and
the collected infrastructure-related data to determine its legitimacy. The EDoS mitigator can then
inquire the relevant XR service provider about any notable changes in the XR service consumption
before rejecting the operation. Changes in XR service consumption may include an increase in active
consumers of the XR service, leading to higher generation of XR stream data, which would require
additional cloud resources for processing. Alternatively, it could be an influx of users accessing the
system and consuming XR stream data. If the XR service provider confirms such changes, the EDoS
mitigator can reassess its decision and allow the necessary scaling up of resources. If the XR service
provider indicates that there was no major change in the XR service consumption, the EDoS mitigator
can reject the auto-scaling operation as it may be considered potentially malicious. By communicating
with the XR service provider and validating the details, the EDoS detection and mitigation framework
can improve its accuracy and make better decisions regarding resource scaling.

Generally speaking, FortisEDoS is a framework designed to ensure the resilience of elastic B5G services
(including XR services) against EDoS attacks. It integrates CGGRU, a deep learning-powered DDoS
anomaly detection model that accurately discerns malicious behavior. Transfer learning enhances
detection sensitivity while accelerating the training process. FortisEDoS provides intuitive explanations
for its decisions, fostering trust in deep learning-assisted systems.

We compared the CG-GRU model with other variants, including G-GRU and GRU models, and a LSTM-
based model proposed in a previous work. We conducted a layer ablation study to assess the impact
of different layers on the performance of the models. The evaluation was done using Precision, Recall,
and F1 metrics, and the results showed that CG-GRU outperformed all other models (Figure 118). The
model demonstrated high sensitivity in identifying anomalous CNF's status while maintaining an
acceptable Precision and a reasonable F1 score. We also evaluated the computation and storage
overhead induced by CG-GRU and its counterparts, and the results showed that CG-GRU model
brought a significant reduction in training time, inference time, and model size compared to the best-
performing LSTM-based model (Figure 119). The study concludes that the quality of the spatio-

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 154 of 180

temporal features learned by the feature extraction block is crucial for achieving high performance in
multivariate time series anomaly detection, and that capturing both spatial and temporal
dependencies is important. The results also suggest that adding Conv1D layer and GAT layers can boost
the model's performance and improve the estimation of the anomaly threshold for discriminating
anomalous CNF's status. We have analyzed the computation and storage overhead associated with
CG-GRU model and its counterparts. The study measured various variables, including the average
training time, average inference speed, and model size. The results are presented in Figure 119, where
we can compare the data. One of the key observations is that GRU-based models are quicker to train
and make inferences, and occupy much less storage space than LSTM-based models. This can be
attributed to GRU cells using fewer parameters and gates than LSTM cells while accomplishing the
same task. The data in Figure 119 indicates that CG-GRU model is up to 12.42%, 23.73%, and 21.54%
more efficient in terms of training time, inference time, and model size, respectively, as compared to
the best-performing LSTM-based model (i.e., CG-LSTM).

Figure 118: Attack Detection Performances [89].

Figure 119: Computation and storage costs of the models [89].

The CG-GRU model effectively predicts a normal CNF's status with high accuracy. It achieved a low
prediction RMSE of 0.039 and MAE of 0.1189 on the validation dataset.

The CG-GRU model's high forecasting quality is due to its ability to capture time dependencies and
spatial correlations among CNF's metrics. The model's accuracy is evident from the closely matched
forecast and ground truth values for the video streamer's metrics in Figure 120.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 155 of 180

During DDoS attack periods, the deviation between forecast and real values becomes pronounced,
indicating an increase in prediction error due to abnormal metric values. The framework can use
different methods to tackle adversarial attacks, like transferring services to safer nodes and rejecting
auto-scaling. MTD-based robust ML models can improve resilience against such attacks. Enhancing
EDoS detection and mitigation, including cloud infrastructure metrics and connecting with XR service
providers, can improve the framework's effectiveness. For instance, when an EDoS mitigator needs to
auto-scale the operation, it can utilize the trained model and collected infrastructure-related data to
determine its legitimacy. By communicating with the XR service provider and validating the details, the
EDoS detection and mitigation framework can improve its accuracy and make better decisions
regarding resource scaling.

Figure 120: Predictive Analysis of Video Streamer CNF Performance and detection of Hulk and Slowloris attacks
in testing data [89].

Figure 121 shows a heatmap of forecasting errors over time for slice 1's video streamer. The x-axis
represents time steps, and the y-axis shows CNF metrics. Dark blue indicates zero error, while dark red
signifies higher error. The heatmap visually identifies attack patterns and impacted metrics. The largest
errors occur during attacks, with clear distinctions between Hulk and Slowloris patterns. Figure 121
shows a heatmap of forecasting errors over time for slice 1's video streamer. The x-axis represents
time steps, and the y-axis shows CNF metrics. Dark blue indicates zero error, while dark red signifies
higher error. The heatmap visually identifies attack patterns and impacted metrics. The largest errors
occur during attacks, with clear distinctions between Hulk and Slowloris patterns. Figure 122 reveals
the top three metrics contributing to forecasting errors during Hulk and Slowloris attacks, aligning with
their respective natures. Hulk's high HTTP request rate, open sockets, and CPU usage reflect its high-
rate nature, while Slowloris's impact on open sockets mirrors its low-rate strategy. These findings

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 156 of 180

confirm the distinct behaviors of Hulk and Slowloris attacks, as evidenced by their respective effects
on forecasting errors. Reveals the top three metrics contributing to forecasting errors during Hulk and
Slowloris attacks, aligning with their respective natures. Hulk's high HTTP request rate, open sockets,
and CPU usage reflect its high-rate nature, while Slowloris's impact on open sockets mirrors its low-
rate strategy. These findings confirm the distinct behaviors of Hulk and Slowloris attacks, as evidenced
by their respective effects on forecasting errors.

Figure 121: A heat map visualization of forecasting errors per CNF’s metric for interpretability [89].

Figure 122: The visual signature of Hulk and Slowloris attacks using the forecast errors heat map [89].

9.2.3 Security as a Service for Service Mesh

The large amount of data processed by XR applications, and the crucial need for keeping the latency
low, inspire us to shift the security mechanisms to other microservices rather than the XR
microservices. In other words, we can provide a security service to the XR microservices and do not
involve them in the details of threat mitigation procedures. This approach maintains the scalability of
the whole application while efficiently utilizing the resources to fulfill the needs of XR services.

The first point to consider is the protection of data transferred between microservices of an
application. As communication between microservices can be implemented based on service mesh

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 157 of 180

infrastructure, the most basic approach could be to use the mTLS (mutual Transport Layer Security)
protocol. Based on this protocol, the connection between two microservices is encrypted and only the
end-points of that connection can decrypt it. However, due to the large amount of data transferred
among XR microservices, they may run out of resources for performing encryption/decryption
processes and have to scale-up their resources. This is against the scalability goal of 5G and beyond
services (including XR services), and hence, we can provide microservices that serve related security
utilities. This approach is a sort of security-as-a-service (SEaaS) concept.

The main challenge in designing a SEaaS solution for XR services is the delay that the extra connections
between XR and SEaaS microservices may cause. We plan to relocate the microservices on the pods
with lower end-to-end delay with the XR pods, and also provide multiple replicas to distribute the
requests among them. Moreover, when the number of requests grows, we can also increase the
number of replicas. To avoid EDoS attacks against this solution, the above-mentioned Cloud Native
Anomaly Detection and Mitigation method (i.e., FortisEDoS) can be leveraged.

Figure 123: The architecture of deploying SEaaS in Kubernetes for securing XR applications [90].

We can consider Service Mesh (SM) as tools designed to address the challenges of managing traffic,
security, and observability in microservices and distributed architectures. The architecture of such
solution in Kubernetes can be as shown in Figure 123. Our architecture uses Encryption as a Service
(EaaS) through Kubernetes Service Meshes to provide effective cryptography services to microservices
on resource-limited devices [91]. In Figure 123, Section A is considered the core of Kubernetes, as it
performs coordination and management tasks. Its functionality is based on various components that
work together seamlessly to ensure the system's smooth operation. These components include the
Kubernetes API server, which acts as the central control point for all Kubernetes-related operations,
and the etcd key-value store, which provides a distributed data store for the system's configuration
data. Moreover, Kubernetes uses various controllers and schedulers to manage the deployment and
scaling of applications and services on the cluster, while ensuring that resources are allocated
efficiently and fairly across all nodes in the system.

The section B in Figure 123 refers to a cluster of multiple servers operating under Kubernetes’
management. These servers are designed to host a set of applet applications that can be seamlessly
deployed to other servers by Kubernetes and be immediately ready to run. This system allows

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 158 of 180

Kubernetes to manage load-balancing efficiently, ensuring maximum resource utilization and
preventing downtime. EaaS is a secure tool for managing resource requests, with Kubernetes checking
and approving them before providing access via Kubectl commands. It offers a seamless user
experience and ensures the security of sensitive information.

In the context of service providers, it is possible for users to also act as service providers (Section E).
For instance, a user may have many Internet of Things (IoT) devices that can be utilized for EaaS-related
tasks. After appropriate resource allocation, these devices can communicate with servers and perform
the necessary work associated with EaaS. This can include a variety of tasks, such as data processing,
storage, and analysis. This approach allows for more efficient and cost-effective delivery of EaaS, while
also leveraging the capabilities of distributed IoT networks.

9.2.4 Cloud Native Anomaly Detection and Mitigation

As discussed before in section 9.2, the recent shift of modern applications to highly distributed and
dynamic Cloud-Native environments and the growing volume of heterogeneous communications
resulting from this shift increases the complexity of managing security. Indeed, Cloud-Native
applications demand tailored security measures to protect their microservices, which can span
multiple domains.

According to these challenges, a highly-needed security mechanism consists of a security-focused
analytics service offered as part of the overall managed functions of the CHARITY framework. Such a
service constitutes an essential building block in the overall security and privacy strategy for XR
applications. Such an integrated service is of the utmost importance, for instance, to enable various
processing mechanisms (e.g., anomaly-detection algorithms) in a more efficient and scalable way.
Numerous scenarios require security, such as the real-time video processing of surrounding
environments captured by the XR HMDs to find bystander-sensitive information. Likewise, as initially
investigated, such a service can also be used to detect network traffic anomalies.

Figure 124 illustrates how the preliminary SECaaS reference architecture maps into the overall
CHARITY architecture and the initial mapping of the surveyed open sources for each component
focused on the network anomaly detection problem.

Figure 124: Mapping open-source enablers for network security in CHARITY architecture.

The proposed network anomaly service builds upon closed loops, as described in the ETSI ZSM
specification, to implement an autonomous and intelligent process of detecting and reacting to
network security issues. It comprises the monitoring agents, an analytics component, and a policy
engine. More, it leverages the concept of a Service Mesh and sidecars as strategically placed elements
to extract network data and enforce security policies.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 159 of 180

The Istio/Envoy pair were part of the initial experimental works. Istio provided traffic management
capabilities (e.g., ingress traffic control) and Envoy the sidecars functionalities. Service Mesh makes it
possible to support the collection of network data and the application of network security policies
without changing the services to be monitored. Open Policy Agent (OPA) was also tested as a more
decoupled and forward-looking alternative to enforce and fine-control distinct security policies at
different levels of a Cloud-Native environment. For network traffic, instead of solely relying on Envoy
and Istio filtering capabilities, an Envoy’s External Authorization filter was investigated to delegate the
network authorization decision to OPA. In the initial scenario, the analysis component included the
usage of NFStream63 to aggregate and extract features from network packets and a machine learning-
based network classification model to classify network packets into normal or anomalous traffic. The
output of such classification supported the decision of whether the network communication should be
blocked.

Additional security tools explicitly tailored for Cloud Native environments will be further investigated.
Falco will be considered for detecting malicious activity attempts and signature-based CVE exploits as
an input for the Analytics Engines (AE). Kube-Hunter will be considered to provide information on the
cluster's vulnerabilities and whether pods are vulnerable. Kube-Bench will be assessed for the
automation of security CIS Benchmark tests in a Kubernetes cluster. Finally, the monitoring system
Prometheus and Grafana will be further evaluated as pivotal tools for collecting security-related
metrics and logs and feeding the AE (Analytics Engine) and other CHARITY components.

The proposed analytics service takes inspiration from the closed-loop pattern and OODA loop model,
as discussed in the ZSM framework, to intelligently enforce the application of network security policies
based on network metrics. Figure 125 depicts the intermediate functions which correspond to the
steps of the OODA loop model: Data Collection (Observe), Analytics (Orient), Intelligence (Decide),
Orchestration & Control (Act). The first is responsible for observing network traffic from the underlying
Cloud-Native environment. The Analytics function allows the detection of anomalies in previously
collected and observed data through ML (Machine Learning) mechanisms. The Intelligence function
makes decisions for mitigating anomalies (e.g., blocking network traffic with a particular origin) based
on input received from Analytics. Finally, the Orchestration & Control function applies the measures
decided to mitigate the anomaly, control the communication of microservices, and avoid dangerous
situations quickly and efficiently.

Figure 125: Network anomaly detection and mitigation functions mapped into OODA loop and closed-loop
pattern.

OODA model can be applied at a security level to detect network anomalies and implement mitigation
mechanisms. Thus, it becomes possible to manage the lifecycle of resources more consistently,

63 https://www.nfstream.org/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 160 of 180

encompassing scenarios from various domains, as in Cloud Native environments. This model can be
used together with other specified approaches to automate anomaly detection and mitigation.
Through Service Mesh, it is possible to obtain the necessary network observability to detect network
anomalies through Machine Learning to mitigate possible cyber threats (e.g., application of network
policies at the Service Mesh level).

One possible architecture for this implementation would be the one represented in Figure 126. One of
the critical components of this architecture is the Collection agent that allows the capture of network
traffic for later delivery (as part of the Data Collection function) to the AICO (Analytics Intelligence
Control and Orchestration). In turn, AICO process the data and analyse it for possible anomaly
detections (as part of the Analytics function), decide the next steps for its mitigation (as part of the
Intelligence function) and imposes the necessary changes (as part of the Control & Orchestration
function).

Figure 126: Reference architecture of the proposed framework.

AICO is a component implemented centrally and separately from cloud-native applications, unlike
collection agents that must be alongside them. In addition, the edge of the mesh also requires a
collection agent o allow protection against external threats. Microservice-level collection agents have
only visibility into internal traffic, and as such, they cannot provide adequate security for external
traffic. The collection agent at the edge brings observability over north-south traffic.

In this approach, there are some security aspects to consider, such as:

• Separation of concerns - Adopting decoupled closed-loop functions in different components is
possible. However, this causes increased network traffic between components, which requires
additional resources to support these communications.

• Data Collection - Another possible approach would be redirecting network traffic directly to
the AICO component at the fabric level. However, a more complex network configuration
would be required. The same case would apply to extending the functionality of sidecar proxies
to allow access to traffic data, which requires complex configurations since the metrics
reported by sidecars may not even include all the information contained in the network
packets. Also, using an additional sidecar proxy for this situation would increase the processing
delay. Another alternative could be configuring AICO to use the node’s network interface.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 161 of 180

However, this violates the isolated nature of containers, which would pose a security risk (e.g.,
in multi-tenancy scenarios).

• Northbound-southbound traffic - Typically, microservices are exposed only internally, and
external traffic goes through a load balancer at the edge of the mesh, which presents a single
input. However, when network packets go through ingress, the source IP address is replaced
by the ingress address, which makes microservice-level protection from external traffic
impossible. The collection agent placed on the ingress makes it possible to capture these
packets and preserve the source IPs.

• Analytics function must allow the detection of anomalies comprehensively enough to deal with
the vulnerabilities of each service, which may mean handling multiple algorithms. One
algorithm may not be able to detect all anomalies, but multiple algorithms increase the
detection rate.

An experimental case was carried out in the context of CHARITY research activities to test this
approach, where Kubernetes was used to implement the infrastructure to support the Cloud-Native
environment, Istio and Envoy proxies for the use of the Service Mesh concept. In that regard, a
publication entitled “Cloud-Native Intelligent Anomaly Detection and Mitigation” is under preparation.
Istio’s out-of-the-box security mechanisms (authorization, authentication, and certificate
management) do not broadly cover security vulnerabilities in modern Cloud-Native environments. As
such, OPA was also used alongside Istio to ensure enhanced security. OPA offers a more remarkable
set of features (e.g., admission control and container security), which significantly increases the level
of protection of the environment.

The reference application under protection used in the experiments includes an MQTT message broker
component, handling sensitive data over the North-South (with the external IoT devices) and East-
West (between internal components) network traffic. This component poses a significant security risk
as an attack against such a service can compromise communication between IoT devices and lead to
sensitive information leakages. Figure 127 depicts the practical use case scenario.

Figure 127: Experimental Use Case scenario.

A DoS attack against the message broker was generated to evaluate the architecture's behaviour and
reaction. Figure 128 shows the evolution of TCP connection to the message broker. The Collection
agent captured and stored the network packets, which were later submitted to a pre-trained ML model
(using Random-Forest). Through the analysis, it is possible to see that an anomaly was detected. A
blocking policy for the offending IP address was registered to mitigate the anomaly using the OPA REST
API. Subsequently, it was verified that the traffic was blocked since incoming connections from the
respective IP address started to be rejected.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 162 of 180

Figure 128: Evolution of TCP connections registered in the message broker.

Using the discussed open-source enablers made it possible to conclude that threats can be effectively
stopped with the proposed approach.

9.3 Security Aware Orchestration

Orchestration and scheduling of XR services form the core of the CHARITY architecture. Thus, it is
important to enclose security for end-to-end service delivery. Apart from the default security of the
application (Section 7.1), we plan to achieve secured orchestration. We assume the application is built
of modular tasks, and the tasks are composed of several functions.

9.3.1 Microservice Security

Tasks are deployed as microservices, and an important step is to see whether the containers are
secure. Adversaries with access to a container (running inside a host that is part of a large cluster)
might be able to exploit vulnerabilities at different layers to conduct powerful attacks (e.g., Remote
Code Execution (RCE) attacks). Among those vulnerabilities, those that target the OS kernel of the host
where the (malicious) container resides are the most dangerous. Adversaries who send maliciously
crafted syscalls can trigger memory leaks, write arbitrary contents into shared files with the host or
gain elevated privileges in the host (among others). One prominent example is the weakness found in
the waitid system call, which allowed adversaries to run a privilege escalation attack to gain access to
the host. The fundamental reason why this type of attack exists is that containers have too many
capabilities enabled by default. Several Linux kernel security modules, such as AppArmor and SELinux,
have been released to restrict the capabilities of containers. Yet, none of these modules tackles the
fundamental question of how to minimise the containers’ capabilities.

To tackle this, we are designing a tool that automatically finds the minimum set of capabilities that
containers need for executing their applications correctly while minimising their interactions with the
OS kernel. We hypothesise that the fewer capabilities containers have, the harder it will be for
adversaries to carry out attacks against the host’s OS kernel. Specifically, the proposed tool would:

• Be sufficiently generic that it can be applied to any type of application or container (i.e., not
only Docker).

• Accurately and efficiently characterise the syscall patterns of containerised applications.

• Satisfy the previous two requirements while preventing cloud providers from inferring any
information about applications from their syscall patterns.

We will integrate this tool with the orchestrator for both static and dynamic analysis of the
microservices while executing the task. This would enable the CHARITY to be much more secure and
pave the way for secured multi-tenant deployments.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 163 of 180

9.3.2 Secured Orchestration and Scheduling

The second most important thing is to secure communication between the learning module (section
3.2) and the application. We achieve this by enabling network-topology obfuscation using EqualNet.

Distributed Denial of Service (DDoS) attacks constitute one of the Internet’s major threats today. One
prominent example is Link Flooding Attacks, which aim to disrupt the network connectivity of as many
users as possible by congesting network links. More concretely, adversaries aim to inject a large
number of flows so that they all traverse a set of core network links at once (to overload them).
Noticeably, adversaries can use low-volume, separate flows that are indistinguishable from regular
traffic, making it difficult for network operators to develop defences to protect against Link Flooding
Attacks (LFAs).

According to Meier et al. [92], performing LFA against an arbitrary link without any knowledge of the
network topology requires five times more flows than when the adversary possesses this information.
Equally, the number of flows needed to perform an LFA against a target link is higher when the
topology is unknown. Indeed, knowledge of the network topology is an important prerequisite for
executing such attacks effectively, efficiently and stealthily. This has important implications for
adversaries, as their goal is always to cause significant damage while minimising the cost of their
attacks (i.e., the number of flows they have to create) and the chances of being detected.

Intuitively, one could think that keeping the network topology confidential would be an effective
mechanism to increase the cost of performing successful LFAs. Note that this type of defence would
align well with today’s Internet Service Providers (ISPs) (as they regard their network topologies as
confidential). Unfortunately, researchers have demonstrated that existing path-tracing tools (e.g.,
traceroute) can be used “maliciously” to infer previously unknown ISPs’ network topologies, including
their forwarding behaviour and tracing flow distributions (i.e., the number of traceroute flows received
by each router’s interface). Hence, it becomes apparent that adversaries will apply these techniques
to carry out more efficient and effective LFAs.

Over the last few years, researchers have proposed several proactive countermeasures against LFAs
which mitigate such attacks by exposing a virtual (false) network topology that conceals potential
bottleneck links and nodes while in some cases also attempting to maintain the utility of the
information provided by path tracing tools. We began by analysing three state-of-the-art proactive
network obfuscation defences, namely NetHide [92], Trassare et al.’s solution [93] and LinkBait [94].
This resulted in the identification of four common weaknesses which can be used to significantly lower
the security and utility of the virtual topologies they expose.

Motivated by the weaknesses we found in previous work, we proposed and implemented EqualNet, a
secure and practical proactive defence for long-term network topology obfuscation that alleviates LFAs
within a single network domain. The fundamental idea behind EqualNet is to equalise tracing flow
distributions over nodes and links so that adversaries cannot distinguish which of them are the most
important ones, thus significantly increasing the cost of performing LFAs. Meanwhile, EqualNet
preserves subnet information, helping network operators who use path tracing tools to debug their
networks. To demonstrate its feasibility, we implemented a full prototype of it using Software-Defined
Networking (SDN) and performed extensive evaluations both in software and hardware. Our results
show that EqualNet is effective at equalising the tracing flow distributions of small, medium and large
networks even when only a small number of routers within the network support SDN. Finally, we
proved the security of EqualNet under various attacks.

9.4 Security in the Software XR Application

The utilities made available by CHARITY for XR Application developers are primarily included in the XR
Application Management Framework (Section 5). Security is conceptually part of that lifecycle. Hence
the functionalities described in the current paragraph might be implemented in the AMF.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 164 of 180

Nevertheless, we treat them as a specific set of security-related capabilities and give a short overview
in this section.

Several open security assurance tools and software packages can potentially be part of a DevSecOps
cycle for XR Application Developers. The main security related areas to be included in the CHARITY
DevSecOps cycle:

• Static Application Security Testing (SAST):

This step performs a static (application at rest) scan of an application component’s source to assess
the general code quality and detect potential security vulnerabilities. This technique is limited to the
application code and does not seek environment or run time-related vulnerabilities. Issues are
detected at the early stages of the software development life cycle, reducing the overall impact and
the cost of mitigation. SAST capabilities in CHARITY are available as self-standing services, not fully
integrated with the general CI/CD pipeline that is supposed to be fed by wrapped-up images rather
than source code, but provided as general project guidelines to CHARITY Platform developers.

• Static container image security testing:

The container images of application microservice components as well as all XR enablers provided by
CHARITY project, are statically scanned, searching for known vulnerabilities, typically by parsing
through image packages or other dependencies. Each time a developer, through the support of
CHARITY AMF Editor WebGUI, uploads a new container image to the CHARITY XR enabler repository
(based in Harbor open source container registry64), a vulnerability scan is automatically performed
(using embedded open source Trivy for vulnerability analysis 65). The results are collected inside
Harbor/Trivy vulnerability repository and exported to the AMF Editor using Harbor REST API, to be
made directly available to XR application developers through their usual CHARITY WebGUI.

Figure 129 shows a sample screenshot of the CHARITY AMD Editor web page showing the results of
the vulnerability scan of an XR sample enabler (MeshMerger in this case)

Figure 129: Vulnerability scan example.

64 Harbor open source container registry: https://goharbor.io/

65 Trivy open source vulnerability scanner: https://trivy.dev/

https://goharbor.io/
https://trivy.dev/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 165 of 180

In the top right bar the summary counters of the vulnerabilities by severity is reported, while in the
bottom part of the window (partially clipped due to its length) each vulnerability is described, with a
link to a trusted site containing full details and reference to CWE (Mitre) and NVD (NIST) sites where
to retrieve hints on how to fix the issues. Figure 130 is the screenshot of the NIST web page for the
first vulnerability reported by Trivy (CVE-2022-47695) retrieved following the link shown in the
previous Web page.

Figure 130: Vulnerability description at Nist site.

Automated static application testing combined with container testing techniques allow the detection
of a broad range of different vulnerabilities.

Regarding the security aspects for the Application Management Framework, a centralized
Authentication and Authorization mechanism based on the OpenID-connect66 protocol (an identity
layer on top of the OAuth 2.067 protocol, the industry-standard for authorization) has been adopted.

The Authentication and Authorization layer ensures that all the access to resources provided by the
portal and by the backend components are made by users or services which have proper permissions.
For both end users and automated services, a role-based policy is enforced and checked at every
request leveraging a centralized component which denies access whenever a condition is not met.
Keycloak, supported by Red Hat, is the open-source framework selected and adopted for the AMF. By
configuring proper realms and, within them, specific roles, policies and permissions, it is possible to
specify fine-grained rules for the endpoints exposed by the system both for external (internet-exposed)
endpoints and for internal (also service-to-services) ones.

All the systems and frameworks participating in the AMF ecosystem (the Harbor container registry,
Spring Boot microservices, the Jenkins CI/CD orchestration engine) have been integrated with Keycloak
and inherit the same access policies defined there.

66 https://openid.net/connect/

67 https://oauth.net/2/

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 166 of 180

9.5 Holistic Security and Privacy Framework

The emergence of new technologies also reflects the emergence of new threats, increasingly more
complex and unpredictable. With artificial intelligence methods, it is possible to detect threats and
preserve user privacy. Thus, the HSPF framework is introduced, which uses deep learning algorithms
to detect threats in network traffic.

9.5.1 HSPF Overview

The Holistic Security and Privacy Framework is composed of three main components: Aggregator,
Collector and Agent.

The aggregator corresponds to the main framework Unit, being responsible for coordinating the
Federated Training procedure. It performs the management and distribution of the different ML
models used for anomaly detection by different federated agents, saving in the database the different
training iterations of these models for analysis and comparison purposes.

The Agent component, where the federated agent resides, is responsible for inferring the inbound and
outbound traffic and training, accordingly, being the network traffic collected by the Collector. It also
is the main trainee of the Federated Training procedure along with other Agent components inserted
in applications of the same type which are utilizing the same ML model.

Both components, the Agent and the Collector, are injected as sidecars next to any existing container
where the to-be-secured application is executing.

The first step towards the detection of traffic anomalies is to perform the traffic capture itself. As such,
the Collector is injected into all the micro-services of the application, with the sole purpose of
registering the incoming and outgoing traffic for the respective service. Also called as “side-cars”, their
final output is a pcap file, containing all the network traffic previously obtained.

Considering all the pcap file produced by the sidecars, for each one, a csv formatted file is generated,
which is used later on to train AI approaches. Such conversion is made using NFStream tool, aiming to
produce datasets with a set of features. As there are a set of features that are not relevant for the
identification of traffic anomalies (since their value is not relevant with the traffic characteristics itself
and rather represent the origin, endpoint and other metadata of the flow), those have been removed.

With a focus on unsupervised approaches, the implemented classification model is based on an
Autoencoder. An Autoencoder is a ML algorithm based on Unsupervised Deep Learning, which is
known to present a great balance between classification performances and fast classification times.

For supervised approaches, it was concluded that it is necessary to previously train the algorithms with
a set of attacks, which translates into an inability of the algorithm to identify unseen attacks. Also,
considering that every time the algorithm needed to be train in runtime, it was necessary to have the
dataset of known attacks locally, or send the collected data (from the micro-service communications)
to an external place to allow this training. Both options had some limitations. The first presented an
issue with storage space availability, and the second a major privacy (and potencial security) issue.

9.5.2 UC Integration Scenario

With this framework and its components in mind, this section presents the integration of the HSPF tool
in the context of the CHARITY project. For this purpose, a scenario of integration was built to provide
an overview of the capabilities of HSPF in the context of a CHARITY use case, specifically, Use-Case IV
- VR Tour Creator. This use case (UC) is composed of five components: cyango-cloud-editor, cyango-
backend, cyango-database, cyango-worker, and cyango-story-express.

In this integration scenario, our objective is to deploy the UC IV microservices in a Kubernetes cluster
and instantiate the HSPF framework within those microservices. This integration entails deploying the
various HSPF components within the UC namespace and configuring them to capture and analyse
network traffic for anomaly detection. This configuration is showcased in Figure 131.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 167 of 180

Figure 131: UC Integration Scenario.

Firstly, the deployment of the UC took place, where a dedicated namespace was created in order to
hold the components of this application. The microservices were then configured and instantiated in
that namespace. Moreover, we deployed the HSPF components within the UC namespace. The HSPF
Aggregator component is instantiated to manage and distribute ML models for anomaly detection,
alongside the HSPF MQTT broker, to allow the communication between the Aggregator and the Agent,
and the HSPF PostgreSQL to enable the storage of Model Training Iterations. Once these components
are ready, we deployed the HSPF emqx-broker composed of the Agent and the Collector containers
which are then injected as sidecars alongside each microservice pod by the HSPF Agent injection
(Figure 132), being the last component to be deployed. The Agent component is tasked with deducing
both inbound and outbound traffic and adjusting training, accordingly, using the traffic data collected
by the Collector container. Figure 133 showcases the initial behaviour of both the Aggregator and the
Agent within the Kubernetes environment configured after everything is instantiated. After a certain
amount of training the classifier starts to provide high-accuracy anomalies reports, providing reliable
information about possible attack flows or anomalies in the network traffic (Figure 134).

Figure 132: HSPF Agent Injector – HSPF Agent and Collector injection into UC microservices.

With the HSPF framework instantiated within the UC IV microservices, the stage was set for
comprehensive anomaly detection and security monitoring within the CHARITY project. This

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 168 of 180

integration not only showcased the capabilities of HSPF but also demonstrated its potential to enhance
the security posture of complex, distributed applications such as the VR Tour Creator.

Figure 133: HSPF Agent and Classifier Initial Behaviour.

Figure 134: HSPF Classifier Anomaly Detection.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 169 of 180

10 Conclusions

This document introduced a summary of the different activities carried out in the four tasks of WP2. It
introduced the CHARITY platform along with the evaluation of its components, particularly in terms of
four fundamental aspects: i) the orchestration framework along with the supporting algorithms and
mechanisms; ii) the monitoring framework; iii) the security of the platform and XR services; iv) the
interface connecting the CHARITY platform and XR service providers.

The design of the orchestration framework has been presented, along with the introduction of the high
level orchestration, the low level orchestration, and the supporting algorithms such as service
scheduling, dynamic routing, and service migration. The CHARITY framework is designed to combine
edge, cloud, and network resources into a single continuum of resources that can be easily used by XR
services. Additionally, it oversees the entire lifespan of XR applications. The achievement of key
performance indicators (KPIs) of an XR application is accomplished through meticulous placement of
its components. The Key Performance Indicators (KPIs) are consistently monitored to maintain the
Quality of Experience (QoE) by carefully adjusting the Extended Reality (XR) service to the platform's
condition. This can be achieved by dynamically modifying the route of data streams, moving certain
components, or enabling the XR services to adjust its own behaviours in coordination with the
orchestrator.

The second part, which pertains to the monitoring framework and the prediction methods for
computation and networking consumption, serves as the fundamental component that would provide
an efficient orchestration framework. Due to the decentralized structure of the CHARITY network,
utilizing a centralized monitoring server is impractical. Hence, the monitoring framework is structured
in a manner that guarantees the dispersion of monitored data over several locations, while
simultaneously upholding the comprehensive observability of the orchestration system. The
monitoring framework's architecture was introduced, along with the tools that will be utilized for its
implementation. Several prediction mechanisms were presented and assessed for both computing and
networking predictions. These techniques utilize innovative neural network models that leverage
continuous time-series data to provide accurate predictions. The investigation focused on estimating
CPU consumption for computational prediction, with the aim of extending it to include memory
prediction. Network prediction techniques focus on determining the traffic load placed on the network.
This involves predicting bandwidth utilization and anticipating users' requests or sessions.

A substantial amount of effort was dedicated to investigating the privacy and security issues of
operating XR services on Edge/Cloud resources. Therefore, a proposed solution to tackle these
difficulties involves implementing an architecture that utilizes service-mesh and Open Policy Agent
(OPA). This design extensively utilizes closed control loops to provide autonomous security capabilities.
Additionally, several security techniques have been developed for cloud-native settings. A proposed
approach aimed to secure containers by restricting them to the essential set of capabilities necessary
for proper functionality. Another approach involves the deliberate concealment of the networking
infrastructure. The purpose of this approach is to restrict the amount of information an attacker can
obtain by scanning the network, while still retaining subnet information for debugging purposes.
Additional approaches were suggested to provide Authentication and Authorization to XR providers,
to do static application and container image security testing, and so forth.

The final part pertains to the application administration framework, which involves the development
of a frontend application. This application allows XR service enablers to connect to the CHARITY
platform and install their services. The AMF incorporates several key components of the CHARITY
platform architecture, including the XR Service Enabler repository, XR Service Blueprint Template
Repository, and XR service exposure component.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 170 of 180

References

[1] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy and M. Manohara, “Toward A Practical Perceptual
Video Quality Metric,” Netflix Technology Blog, 6 June 2016. [Online]. Available:
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652.
[Accessed 15 October 2021].

[2] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison and T. Lynn, “A survey of Cloud monitoring tools:
Taxonomy, capabilities and objectives,” Journal of Parallel and Distributed Computing, vol. 74, no.
10, pp. 2918-2933, 2014.

[3] L. Toka, G. Dobreff, D. Haja and M. Szalay, “Predicting Cloud-Native Application Failures Based on
Monitoring Data of Cloud Infrastructure,” in 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2021.

[4] D. Berman, “Kubernetes Monitoring: Best Practices, Methods, and Existing Solutions,” logz.io, 19
March 2020. [Online]. Available: https://logz.io/blog/kubernetes-monitoring/. [Accessed 15
October 2021].

[5] D. Berman, “Top 11 Open Source Monitoring Tools for Kubernetes,” logz.io, 4 October 2019.
[Online]. Available: https://logz.io/blog/open-source-monitoring-tools-for-kubernetes/.
[Accessed 15 October 2021].

[6] E. Kim, J. Han and J. Kim, “Visualizing Cloud-Native AI+ X Applications employing Service Mesh,”
in 2020 International Conference on Information and Communication Technology Convergence
(ICTC), 2020.

[7] A. Gupta, “Elasticsearch on Kubernetes: A new chapter begins,” elastic, 20 May 2019. [Online].
Available:https://www.elastic.co/blog/introducing-elastic-cloud-on-kubernetes-the-
elasticsearch-operator-and-beyond. [Accessed 15 October 2021].

[8] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck, “Network Slicing and Softwarization: A
Survey on Principles, Enabling Technologies, and Solutions,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, p. 2429–2453, 2018.

[9] M. Masdari and A. Khoshnevis, “A survey and classification of the workload forecasting methods
in cloud computing,” Cluster Computing, vol. 23, p. 2399–2424, 2020.

[10] S. Li, Y. Wang, X. Qiu, D. Wang and L. Wang, “A workload prediction-based multi-VM provisioning
mechanism in cloud computing,” in 15th Asia-Pacific Network Operations and Management
Symposium (APNOMS), Hiroshima, Japan, 2013.

[11] R. N. Calheiros, E. Masoumi, R. Ranjan and R. Buyya, “Workload prediction using ARIMA model
and its impact on cloud applications’ QoS,” IEEE Transactions on Cloud Computing, vol. 3, no. 4,
pp. 449-458, 2015.

[12] Y. S. Patel and R. Misra, “Performance comparison of deep VM workload prediction approaches
for cloud,” in Progress in Computing, Analytics and Networking, 2018, pp. 149-160.

[13] S. Gupta and D. A. Dinesh, “Resource usage prediction of cloud workloads using deep bidirectional
long short term memory networks,” in 2017 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS), Bhubaneswar, India, 2017.

[14] C. Peng, Y. Li, Y. Yu, Y. Zhou and S. Du, “Multi-step-ahead Host Load Prediction with GRU Based
Encoder-Decoder in Cloud Computing,” in 10th International Conference on Knowledge and
Smart Technology (KST), Chiang Mai, Thailand, 2018.

[15] J. Violos, S. Tsanakas, T. Theodoropoulos, A. Leivadeas, K. Tserpes and T. Varvarigou, “Intelligent
Horizontal Autoscaling in Edge Computing Using a Double Tower Neural Network,” Computer
Networks, vol. 217, p. 109339, 9 November 2022.

[16] T. Theodoropoulos, A. Makris, I. Kontopoulos, J. Violos, P. Tarkowski, Z. Ledwoń, P. Dazzi, and K.
Tserpes, “Graph neural networks for representing multivariate resource usage: A multiplayer
mobile gaming case-study,” International Journal of Information Management Data Insights,
Volume 3, Issue 1, 2023, 100158.

[17] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson modeling,” in SIGCOMM '94:
Proceedings of the conference on Communications architectures, protocols and applications,
London, United Kingdom, 1994.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 171 of 180

[18] V. Eramo, T. Catena, F. Lavacca and F. di Giorgio, “Study and Investigation of SARIMA-based Traffic
Prediction Models for the Resource Allocation in NFV networks with Elastic Optical
Interconnection,” in 22nd International Conference on Transparent Optical Networks (ICTON),
Bari, Italy, 2020.

[19] P. Sekwatlakwatla, M. Mphahlele and T. Zuva, “Traffic flow prediction in cloud computing,” in
2016 International Conference on Advances in Computing and Communication Engineering
(ICACCE), Durban, South Africa, 2016.

[20] X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu and W. Zhang, “Interactive Temporal Recurrent
Convolution Network for Traffic Prediction in Data Centers,” IEEE Access, vol. 6, pp. 5276-5289,
2018.

[21] F. Pilka and M. Oravec, “Multi-step ahead prediction using neural networks,” in Proceedings
ELMAR-2011, Zadar, Croatia, 2011.

[22] A. R. Abdellah, O. A. K. Mahmood, A. Paramonov and A. Koucheryavy, “IoT traffic prediction using
multi-step ahead prediction with neural network,” in 11th International Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland,
2019.

[23] T. Theodoropoulos, A.-C. Maroudis, J. Violos and K. Tserpes, “An Encoder-Decoder Deep Learning
Approach for Multistep Service Traffic Prediction,” in IEEE Seventh International Conference on
Big Data Computing Service and Applications (BigDataService), Oxford, United Kingdom, 2021.

[24] A. -C. Maroudis, T. Theodoropoulos, J. Violos, A. Leivadeas and K. Tserpes, "Leveraging Graph
Neural Networks for SLA Violation Prediction in Cloud Computing," in IEEE Transactions on
Network and Service Management, vol. 21, no. 1, pp. 605-620, Feb. 2024.

[25] T. Theodoropoulos et al., “GNOSIS: Proactive Image Placement Using Graph Neural Networks &
Deep Reinforcement Learning,” 2023 IEEE 16th International Conference on Cloud Computing
(CLOUD), Chicago, IL, USA, 2023, pp. 120-128.

[26] T. Theodoropoulos, A. Maroudis, A. Makris, and K. Tserpes, “WEST GCN-LSTM: Weighted Stacked
Spatio-Temporal Graph Neural Networks for Regional Traffic Forecasting,” available on:
https://arxiv.org/abs/2405.00570.

[27] H. Yu, T. Taleb and J. Zhang, “Deterministic Latency/Jitter-aware Service Function Chaining over
Beyond 5G Edge Fabric,” IEEE Transactions on Network and Service Management, 2022.

[28] F. Salaht, F. Desprez and A. Lebre, “An Overview of Service Placement Problem in Fog and Edge
Computing,” ACM Computing Surveys, vol. 53, no. 3, pp. 1-35, 2020.

[29] G. Z. Santoso, Y.-W. Jung, S.-W. Seok, E. Carlini, P. Dazzi, J. Altmann, J. Violos and J. Marshall,
“Dynamic Resource Selection in Cloud Service Broker,” in 2017 International Conference on High-
Performance Computing & Simulation (HPCS), Los Alamitos, CA, USA, 2017.

[30] C. Mechalikh, H. Taktak and F. Moussa, “PureEdgeSim: A Simulation Toolkit for Performance
Evaluation of Cloud, Fog, and Pure Edge Computing Environments,” in International Conference
on High Performance Computing Simulation (HPCS), Dublin, Ireland, 2019.

[31] L. Ferrucci, M. Mordacchini, M. Coppola, E. Carlini, H. Kavalionak and P. Dazzi, “Latency Preserving
Self-Optimizing Placement at the Edge,” in Proceedings of the 1st Workshop on Flexible Resource
and Application Management on the Edge (FRAME), Virtual Event, Sweden, 2020.

[32] H. Yu, Z. Ming, C. Wang, and T. Taleb, “Network Slice Mobility for 6G Networks by Exploiting User
and Network Prediction,” in Proc of IEEE ICC, Rome, Italy, Jun. 2023.

[33] H. Mazandarani, M. Shokrnezhad, T. Taleb, and R. Li “Self-Sustaining Multiple Access with
Continual Deep Reinforcement Learning for Dynamic Metaverse Applications,” in Proc. IEEE Int’l
Conf. on Metaverse Computing, Networking and Applications (IEEE MetaCom 2023), Kyoto, Japan,
Jun. 2023.

[34] C. Wang, B. Jia, H. Yu, X. Li, X. Wang, and T. Taleb, “Deep Reinforcement Learning for Dependency-
aware Microservice Deployment in Edge Computing,” in Proc. of IEEE Globecom’22, Rio De
Janeiro, Brazil, Dec. 2022.

[35] S. Global, “2021 RESEARCH PLAN – Cloud Price Index,” 451research S&P Global, 2021.
[36] S. Gorlatch, H. Tim and F. Glinka, “Improving QoS in real-time internet applications: from best-

effort to Software-Defined Networks,” in International Conference on Computing, Networking
and Communications (ICNC), Honolulu, HI, USA, 2014.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 172 of 180

[37] H. Z. Jahromi and D. T. Delaney, “An Application Awareness Framework Based on SDN and
Machine Learning: Defining the Roadmap and Challenges,” in 10th International Conference on
Communication Software and Networks (ICCSN), Chengdu, China, 2018.

[38] Bashari, M., Bagheri, E., Weichang Du, W. Dynamic Software Product Line Engineering: A
Reference Framework. International Journal of Software Engineering and Knowledge Engineering,
Vol. 27, No. 2 (2017) 191–234.

[39] R. A. Addad, D. L. C. Dutra, T. Taleb and H. Flinck, “Toward Using Reinforcement Learning for
Trigger Selection in Network Slice Mobility,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 7, pp. 2241-2253, 2021.

[40] D. Sabella and e. al., “Developing Software for Multi-Access Edge Computing,” ETSI White Paper
No. 20, Sophia Antipolis, France, 2019.

[41] H. Feng, Z. Shu, T. Taleb, Y. Wang and Z. Liu, "An Aggressive Migration Strategy for Service
Function Chaining in the Core Cloud," in IEEE Transactions on Network and Service Management,
vol. 20, no. 2, pp. 2025-2039, June 2023.

[42] R. A. Addad, D. L. C. Dutra, T. Taleb and H. Flinck, “AI-based Network-aware Service Function Chain
Migration in 5G and Beyond Networks,” IEEE Transactions on Network and Service Management,
vol. 19, no. 1, pp. 472 - 484, 2021.

[43] H. Yu, T. Taleb, K. Samdanis and J. Song, "Toward Supporting Holographic Services Over
Deterministic 6G Integrated Terrestrial and Non-Terrestrial Networks," in IEEE Network, vol. 38,
no. 1, pp. 262-271, Jan. 2024.

[44] H. Yu, T. Taleb, and J. Zhang, “Deep Reinforcement Learning based Deterministic Routing and
Scheduling for Mixed-Criticality Flows,” in IEEE Transactions on Industrial Informatics, Vol. 19, No.
8, Aug. 2023, pp. 8806-8816.

[45] A. Erdal and T. Korkmaz, “Comparison of Routing Algorithms with Static and Dynamic Link Cost in
SDN - Extended Version,” in 16th IEEE Annual Consumer Communications & Networking
Conference, Las Vegas, NV, USA, 2019.

[46] P. Goransson and C. Black, “Software Defined Networks: A Comprehensive Approach,” Morgan
Kaufman, 2014.

[47] R. Fiqih, N. A. Suwastika and M. A. Nugroho, “Equal-cost multipath routing in data center network
based on software defined network,” in 6th International Conference on Information and
Communication Technology (ICoICT), Bandung, Indonesia, 2018.

[48] S. Hossen, H. Rahman, Al-Mustanjid, A. Shakil Nobin and A. Habib, “Enhancing Quality of Service
in SDN based on Multi-path Routing Optimization with DFS,” in 2019 International Conference on
Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 2019.

[49] S. Syaifuddin, M. F. Azis and F. Sumadi, “Comparison Analysis of Multipath Routing
Implementation in Software Defined Network,” Kinetik Game Technology Information System
Computer Network Computing Electronics and Control, vol. 6, no. 2, 2021.

[50] T. Slavica, I. Radusinovic and N. Prasad, “Performance comparison of QoS routing algorithms
applicable to large-scale SDN networks,” in 2015-International Conference on Computer as a Tool
(EUROCON), 2015.

[51] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils, T. Telkamp and P. Francois, “A
Declarative and Expressive Approach to Control Forwarding Paths in Carrier-Grade Networks,” in
ACM SIGCOMM computer communication review 45.4, New York, NY, USA, 2015.

[52] L. Siamak, F. Pakzad and M. Portmann, “SCOR: software-defined constrained optimal routing
platform for SDN,” arXiv preprint arXiv:1607.03243, 2016.

[53] N. Farrugia, J. A. Briffa and V. Buttigieg, “An Evolutionary Multipath Routing Algorithm using SDN,”
in 9th International Conference on the Network of the Future (NOF), 2018.

[54] López, Jorge and e. al., “Priority Flow Admission and Routing in SDN: Exact and Heuristic
Approaches,” in 19th International Symposium on Network Computing and Applications (NCA),
2020.

[55] T. Shreya and e. al., “Ant colony Optimization-based dynamic routing in Software defined
networks,” in 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), 2020.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 173 of 180

[56] Y. W. Chuan and S. Yao, “A Multi-path Routing Algorithm based on Ant Colony Optimization in
Satellite Network,” in IEEE 2nd International Conference on Big Data, Artificial Intelligence and
Internet of Things Engineering (ICBAIE), 2021.

[57] J. Xie and e. al., “A survey of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 393-430, 2018.

[58] A. Abdelhadi, R. Boutaba and G. Pujolle, “NeuRoute: Predictive dynamic routing for software-
defined networks,” in 13th International Conference on Network and Service Management
(CNSM), 2017.

[59] M. K. Awad and e. al., “Machine learning-based multipath routing for software defined networks,”
Journal of Network and Systems Management, vol. 29, no. 2, pp. 1-30, 2021.

[60] C. Yu and e. al., “DROM: Optimizing the routing in software-defined networks with deep
reinforcement learning,” IEEE Access, vol. 6, pp. 64533-64539, 2018.

[61] T. P. Lillicrap and e. al., “Continuous control with deep reinforcement learning”. Patent U.S. Patent
0 024 643 A1, 2 Feb 2017.

[62] C. Fang, C. Cheng, Z. Tang and C. Li, “Research on Routing Algorithm Based on Reinforcement
Learning in SDN,” Journal of Physics: Conference Series, vol. 1284, no. 1, p. 012053, 2019.

[63] J. Rischke and e. al, “Qr-sdn: towards reinforcement learning states, actions, and rewards for
direct flow routing in software-defined networks,” IEEE Access, vol. 8, pp. 174773-174791, 2020.

[64] J. Specht and S. Samii, “Urgency-based scheduler for time-sensitive switched ethernet networks,”
in 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 2016.

[65] J.-Y. Le Boudec, “A Theory of Traffic Regulators for Deterministic Networks With Application to
Interleaved Regulators,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2721-2733,
2018.

[66] J. Prados-Garzon and T. Taleb, “Asynchronous Time-Sensitive Networking for 5G Backhauling,”
IEEE Network, vol. 35, no. 2, pp. 144-151, 2021.

[67] J. Prados-Garzon, T. Taleb and M. Bagaa, “Optimization of Flow Allocation in Asynchronous
Deterministic 5G Transport Networks by Leveraging Data Analytics,” IEEE Transactions on Mobile
Computing, 2021.

[68] M. Shokrnezhad, and T. Taleb, “Near-optimal Cloud-Network Integrated Resource Allocation for
Latency-Sensitive B5G,” in Proc. of IEEE Globecom’22, Rio De Janeiro, Brazil, Dec. 2022.

[69] Y. Chen, Y. Sun, H. Yu, and T. Taleb. “Joint Task and Computing Resource Allocation in Distributed
Edge Computing Systems via Multi-Agent Deep Reinforcement Learning.” In IEEE Transactions on
Network Science and Engineering. (Early Access)

[70] A. Boudi, B. Miloud, P. Pöyhönen, T. Taleb and H. Flinck, “AI-Based Resource Management in
Beyond 5G Cloud Native Environment,” IEEE Network, vol. 35, no. 2, pp. 128 – 135, 2021.

[71] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes, P. Dazzi, A. Protopsaltis and
R. Li, “Towards Supporting XR Services: Architecture and Enablers,” in IEEE Internet of Things
Journal, vol. 10, no. 4, pp. 3567-3586, 15 Feb.15, 2023.

[72] J. A. De Guzman, K. Thilakarathna and A. Seneviratne, “Security and Privacy Approaches in Mixed
Reality: A Literature Survey,” ACM Computing Surveys, vol. 52, no. 6, pp. 1-37, 2020.

[73] ETSI, “Zero-touch network and Service Management (ZSM); General Security Aspects,” ETSI,
Sophia Antipolis, France, 2021.

[74] C. DeCusatis, P. Liengtiraphan, A. Sager and M. Pinelli, “Implementing Zero Trust Cloud Networks
with Transport Access Control and First Packet Authentication,” in 2016 IEEE International
Conference on Smart Cloud (SmartCloud), New York, NY, USA, 2016.

[75] M. Sanders and C. Yue, “Automated Least Privileges in Cloud-Based Web Services,” in Proceedings
of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies, San Jose, USA,
2017.

[76] S. Mehraj and M. T. Banday, “Establishing a Zero Trust Strategy in Cloud Computing Environment,”
in 2020 International Conference on Computer Communication and Informatics (ICCCI),
Coimbatore, India, 2020.

[77] S. Rose, O. Borchert, S. Mitchell and S. Connelly, “NIST Special Publication 800-207 - Zero Trust
Architecture,” NIST, USA, 2020.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 174 of 180

[78] W. Li, Y. Lemieux, J. Gao, Z. Zhao and H. Yanbo, “Service Mesh: Challenges, State of the Art, and
Future Research Opportunities,” in 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE), San Francisco, CA, USA, 2019.

[79] W. Morgan, “Service mesh: A critical component of the cloud native stack,” Buoyant.io, April
2017. [Online]. Available: https://www.cncf.io/blog/2017/04/26/service-mesh-critical-
component-cloud-native-stack/. [Accessed October 2020].

[80] R. Chandramouli and Z. Butcher, “NIST Special Publication 800-204A - Building Secure
Microservices-based Applications Using Service-Mesh Architecture,” NIST, USA, 2020.

[81] E. Harlicaj, “Anomaly Detection of Web-Based Attacks in Microservices,” Aalto University, Espoo,
Finland, 2021.

[82] G. Baye, F. Hussain, A. Oracevic, R. Hussain and S. Ahsan Kazmi, “API Security in Large Enterprises:
Leveraging Machine Learning for Anomaly Detection,” in 2021 International Symposium on
Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates, 2021.

[83] L. Miller, P. Mérindol, A. Gallais and C. Pelsser, “Towards Secure and Leak-Free Workflows Using
Microservice Isolation,” in 2021 IEEE 22nd International Conference on High Performance
Switching and Routing (HPSR), Paris, France, 2021.

[84] K. M. Musa, “Evaluating Security-as-a-Service (SECaaS) Measures to Increase the Quality of Cloud
Computing,” International Journal of Science and Engineering Applications (IJSEA), vol. 6, no. 12,
pp. 350-359, 2017.

[85] M. Baby and I. Memon, “Security-as a-service in Cloud Computing (SecAAS),” International Journal
of Computer Science and Information Security, vol. 15, no. 2, 2017.

[86] K. A. Torkura, M. I. H. Sukmana, C. F. and C. Meinel, “Leveraging Cloud Native Design Patterns for
Security-as-a-Service Applications,” in 2017 IEEE International Conference on Smart Cloud
(SmartCloud), New York, NY, USA, 2017.

[87] C. Benzaïd, T. Taleb and J. Song, "AI-Based Autonomic and Scalable Security Management
Architecture for Secure Network Slicing in B5G," in IEEE Network, vol. 36, no. 6, pp. 165-174,
November/December 2022.

[88] C. Benzaid, T. Taleb, A. Sami, and O. Hireche, “A Deep Transfer Learning-powered EDoS Detection
Mechanism for 5G and Beyond Network Slicing,” in Proc. of IEEE Globecom’23, Kuala Lumpur,
Malaysia, Dec. 2023.

[89] C. Benzaid, T. Taleb, A. Sami, and O. Hireche, “FortisEDoS: A Deep Transfer Learning-empowered
Economical Denial of Sustainability Detection Framework for Cloud-Native Network Slicing,” in
IEEE Transactions on Dependable and Secure Computing.

[90] C. Benzaid, T. Taleb, and J. Song, “AI-based Autonomic & Scalable Security Management
Architecture for Secure Network Slicing in B5G,” IEEE Network Magazine, Vol. 36, No. 6, Dec.
2022, pp. 165 - 174.

[91] Javadpour, A., Ja’fari, F., Taleb, T., Zhao, Y., Bin, Y., & Benzaïd, C. (2023). Encryption as a Service
for IoT: Opportunities, Challenges and Solutions. IEEE Internet of Things Journal.

[92] M. Roland, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechev. "NetHide: Secure and practical
network topology obfuscation." In 27th USENIX Security Symposium (USENIX Security 18), pp.
693-709. 2018.

[93] S. T. Trassare, R. Beverly and D. Alderson, "A Technique for Network Topology Deception,"
MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, CA, USA, 2013, pp.
1795-1800.

[94] X. Ding, F. Xiao, M. Zhou and Z. Wang, “Active Link Obfuscation to Thwart Link-flooding Attacks
for Internet of Things,” 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Guangzhou, China, 2020, pp. 217-224.

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 175 of 180

Appendix A Additional info

A.1 Tosca custom types for CHARITY

tosca_definitions_version: tosca_simple_yaml_1_3

description: CHARITY custom types

data_types:

 charity.geolocation:

 # geolocation of Components (both deployed by CHARITY and External ones)

 properties:

 # name of the continent/region

 Region:

 type: string

 required: false

 # name of the country

 Country:

 type: string

 required: false

 # name of the city

 City:

 type: string

 required: false

 # latitude in string

 latitude:

 type: string

 required: false

 # longtitude in string

 longtitude:

 type: string

 required: false

 exact:

 type: boolean

 required: false

capability types defined to be used by CHARITY

capability_types:

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 176 of 180

 # gpu describes the gpu of a node and property describes the model of a gpu.

 charity.gpu:

 properties:

 # describes the gpu model

 model:

 type: string

 required: false

 # Dedicated describes if the gpu is a different part from the cpu or not.

 dedicated:

 type: boolean

 default: true

 # NetworkMetric is used for Virtual Link KPIs suitable for capability comparisons

 CHARITY.NetworkMetric:

 properties:

 # Bandwidth for Virtual Links, notice the scalar-unit.bitrate type, e.g., 10 GBs

 bandwidth:

 type: scalar-unit.bitrate

 required: false

 # Latency for Virtual links, notice the scalar-unit.time type, e.g., 10 ms

 latency:

 type: scalar-unit.time

 required: false

 # Jitter for Virtual Links, notice the scalar-unit.time type, e.g., 1 ms

 jitter:

 type: scalar-unit.time

 required: false

 # Preliminary definition of Monitoring KPIs

 CHARITY.MonitoringMetric:

 properties:

 # The monitor map will contain sets of key/value pairs suitable for capability comparisons

 monitor:

 type: map

 required: false

 entry_schema:

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 177 of 180

 type: string

node_types:

 # Node type is being used to describe CHARITY nodes

 CHARITY.Node:

 derived_from: tosca.nodes.Compute

 capabilities:

 # gpu capabilities

 gpu:

 type: charity.gpu

 # other capabilities are inherited from tosca.nodes.Compute

 #host:

 #properties:

 #num_cpus: 1

 #mem_size: 512 MB

 #disk_size: 20 GB

 #os:

 #properties:

 #architecture: x86_64

 #type: linux

 #distribution: centos

 #version: 7.0

 # Component type is being used to describe a component of an application.

 # Components marked as EXTERNAL are not deployed by CHARITY Orchestrator

 CHARITY.Component:

 derived_from: tosca.nodes.SoftwareComponent

 capabilities:

 # this is required to 'bind' a Software component with a Connection Point

 binding:

 type: tosca.capabilities.network.Bindable

 # the image_os field describes the OS inside the image (VM or Container)

 # this information is automatically extracted by the Editor from image metadata

 image_os:

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 178 of 180

 type: tosca.capabilities.OperatingSystem

 # preliminary support to express monitoring KPI comparisons

 monitoring:

 type: CHARITY.MonitoringMetric

 properties:

 # with name property developers will have to provide how the component should be uniquely
named inside CHARITY template

 name:

 type: string

 required: true

 # with the deployment_unit property developers can describe if their component is a K8s VM or a
K8s Pod

 # EXTERNAL means that thes components do not need to be deployed by CHARITY Orchestrator

 deployment_unit:

 type: string

 required: true

 constraints:

 - valid_values: [EXTERNAL, K8S_VM, K8S_POD]

 # for CHARITY deployed components developers need to indicate the image url

 image:

 type: string

 required: false

 # with geolocation property developer can either specify the desired location for the Component
(at edit or input time)

 # or get the orchiestrator assigned location at run-time

 # if 'exact' is true, the deployment will fail if the location can't be matched exactly, otherwise the
closest is selected

 geolocation:

 type: charity.geolocation

 required: false

 # Hint for orchestrator to deploy on Edge or Cloud - not imperative

 placement_hint:

 type: string

 required: false

 constraints:

 - valid_values: [EDGE, CLOUD]

 # with ip property developers can either provide an external ip to the component (at edit or input
time)

 # or get the orchestrator assigned ip at run-time

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 179 of 180

 ip:

 type: string

 required: false

 # preliminary support for environment variables (arbitrary key/value pairs)

 environment:

 type: map

 required: false

 entry_schema:

 type: string

 attributes:

 # instance_id is actually an attribute initialized at deployment time

 # the Orchestrator will compose its value starting from template and resource name, adding other
unique tokens

 instance_id:

 type: string

 # CHARITY Connection Points inherit both 'binding' and 'link' requirements from
tosca.nodes.network.Port

 # Binding will refer the CHARITY.Node, while Link will refer the CHARITY.VirtualLink

 CHARITY.ConnectionPoint:

 derived_from: tosca.nodes.network.Port

 properties:

 # with name property developers will have to provide how the component should be uniquely
named inside CHARITY template

 name:

 type: string

 required: true

 # port number (if required)

 port:

 type: PortDef

 required: false

 attributes:

 # instance_id is actually an attribute initialized at deployment time

 # the Orchestrator will compose its value starting from template and resource name, adding other
unique tokens

 instance_id:

 type: string

D2.2: Edge and cloud infrastructure resource and computational continuum orchestration system

Copyright © 2021 - 2024 CHARITY Consortium Parties Page 180 of 180

 # CHARITY Virtual links also collect the NetworkMetric KPIs in addition to
tosca.nodes.network.Network information

 CHARITY.VirtualLink:

 derived_from: tosca.nodes.network.Network

 properties:

 # with name property developers will have to provide how the component should be uniquely
named inside CHARITY template

 name:

 type: string

 required: true

 attributes:

 # instance_id is actually an attribute initialized at deployment time

 # the Orchestrator will compose its value starting from template and resource name, adding other
unique tokens

 instance_id:

 type: string

 capabilities:

 # Network capabilities for Virtual Link (Bandwidth, Latency, Jitter)

 network:

 type: CHARITY.NetworkMetric

[end of document]

