
1

FortisEDoS: A Deep Transfer Learning-empowered
Economical Denial of Sustainability Detection
Framework for Cloud-Native Network Slicing

Chafika Benzaı̈d∗, Tarik Taleb∗, Ashkan Sami†,‡ and Othmane Hireche§
∗ University of Oulu, Oulu, Finland

† Edinburgh Napier University, Edinburgh, UK
‡ Shiraz University, Shiraz, Iran

§ University of Sciences and Technology Houari Boumediene, Algiers, Algeria
Emails: chafika.benzaid@oulu.fi, tarik.taleb@oulu.fi, sami@shirazu.ac.ir, othmane.hireche@nanoform.com

Abstract—Network slicing is envisaged as the key to unlocking
revenue growth in 5G and beyond (B5G) networks. However, the
dynamic nature of network slicing and the growing sophistication
of DDoS attacks rises the menace of reshaping a stealthy DDoS
into an Economical Denial of Sustainability (EDoS) attack. EDoS
aims at incurring economic damages to service provider due to
the increased elastic use of resources. Motivated by the limitations
of existing defense solutions, we propose FortisEDoS, a novel
framework that aims at enabling elastic B5G services that are
impervious to EDoS attacks. FortisEDoS integrates a new deep
learning-powered DDoS anomaly detection model, dubbed CG-
GRU, that capitalizes on the capabilities of emerging graph and
recurrent neural networks in capturing spatio-temporal correla-
tions to accurately discriminate malicious behavior. Furthermore,
FortisEDoS leverages transfer learning to effectively defeat EDoS
attacks in newly deployed slices by exploiting the knowledge
learned in a previously deployed slice. The experimental results
demonstrate the superiority of CG-GRU in achieving higher
detection performance of more than 92% with lower computation
complexity. They show also that transfer learning can yield an
attack detection sensitivity of above 91%, while accelerating
the training process by at least 61%. Further analysis shows
that FortisEDoS exhibits intuitive explainability of its decisions,
fostering trust in deep learning-assisted systems.

Index Terms—AI Explainability, Anomaly Detection,
Application-layer DDoS, Deep Transfer Learning, Economical
Denial of Sustainability (EDoS), Network Slicing, 5G and
Beyond Networks (B5G).

I. INTRODUCTION

Network virtualization and softwarization are considered
key technological enablers for empowering highly dynamic
operation and management of 5G and beyond (B5G) networks.
Their joint use is vital for allowing next-generation mobile
networks support diversified and flexible deployment scenar-
ios, whereby multiple services/verticals can share the same
physical substrate [1]. The concept is commonly referred to as
network slicing, which enables multiple virtual networks (i.e.,
slices) to be created on top of a shared physical infrastructure.
Each slice is devised with customized network capabilities
to fulfill the performance needs of a specific service type,
such as Enhanced Mobile Broadband (eMBB), Ultra Reliable
Low Latency Communications (URLLC), Massive Internet
of Things (mIoT), Vehicle-to-Everything (V2X), and High-
Performance Machine-Type Communications (HMTC) [2].

A network slice instance comprises a set of network
functions which are chained and can span across multiple
network domains, including the radio access network (RAN),
transport network, core network (CN), and edge network. The
evolution towards a cloud-native telco architecture is promoted
by standardization bodies as a crucial facilitator for supporting
network slicing, owing to its inherent advantages of network
scalability, elasticity, flexibility, and automation. 3GPP has
mandated cloud-native principles in the design of CN network
functions [2]. Open RAN (O-RAN) Alliance (https://www.o-
ran.org/) is building upon and expanding the 3GPP’s func-
tional split of the New Generation RAN (NR-RAN) to
enable cloudification of RAN functions. Furthermore, ini-
tiatives like SD-Fabric (https://opennetworking.org/sd-fabric/)
and TeraFlowSDN (https://tfs.etsi.org/) are paving the way
for cloudified control plane functions in transport networks.
By embracing cloud-native principles, network functions are
designed as loosely coupled micro-services and deployed as
scalable workloads on cloud infrastructure.

A key life cycle management operation of network slices
is auto-scaling, which consists in dynamically expanding or
contracting the capacity of a network slice instance to adapt
resources to slice workload to meet the performance desire.
Network slicing allows for flexible and efficient utilization of
resources with greater cost reduction, thanks to the infras-
tructure sharing, the dynamic resource provisioning and the
auto-scaling feature enabled by network function virtualiza-
tion, software defined networking and cloud computing [3].
Nevertheless, the auto-scaling capability is a double-edged
sword when a (Distributed) Denial of Service – (D)DoS –
attack is underway. In fact, the auto-scaling capability can
reshape an undetected (D)DoS attack into an Economical
Denial of Sustainability (EDoS) attack, which engenders
economic damages to service provider due to the increased
elastic use of resources as well as performance degradation
as a result of shared resource starvation [4]. In network
slicing, the undesirable economic and performance impact
of EDoS is a critical concern as it may spread beyond the
slice under attack, affecting the other slices co-hosted on the
same infrastructure [5]. Such adverse impacts of EDoS attack
are posing a serious threat to accelerate the B5G-powered

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

digital transformation of the industry verticals such as media &
entertainment [6], automotive [7], industry [8] and energy [9],
to name just a few. Thus, providing reliable dynamic resource
provisioning that is EDoS attack aware is paramount to reap
the benefits of network slicing in enabling profitable beyond
5G services.

Achieving the aforementioned goal is challenging as the
recent years have seen a growing trend towards more so-
phisticated and stealthier DDoS attacks that are targeting the
application layer rather than the network layer. According to
Cloudflare’s DDoS attack trends 2022 reports, the application-
layer DDoS attacks have massively spiked in the first quarter
and their amount has risen by 72% in the second quarter
compared to the same period last year. The reports reveal also
that application-layer DDoS attacks targeting HTTP protocol
increased by 164% compared to 2021. This trend is also
reflected in NETSCOUT’s latest DDoS Threat Intelligence
Report released in early April 2023, revealing that HTTP(S)
application-layer DDoS attacks have spiked by 487% since
2019, with the most significant surge in the second half
of 2022. Such trend is owing to the ability of application-
layer DDoS attacks to imitate legitimate behavior with low
network bandwidth usage, which allows them to bypass typ-
ical traffic-based intrusion detection systems [10]. Moreover,
NETSCOUT’s report highlights a significant increase of 79%
in DDoS attacks on the wireless telecommunications industry,
primarily propelled by the growing adoption of 5G wireless
for residential use. This trend is only going to escalate in
the future as 5G penetrates globally. Therefore, without ad-
vanced protection measures, the ever-evolving stealthiness of
application-layer DDoS attacks coupled with the cloud-native
transformation of B5G networks is a serious danger that will
foster the prevalence of EDoS attacks.

Although extensive work has been engaged and several
solutions have been proposed to counter DDoS attacks, ad-
dressing the stealthy application-layer DDoS issue is far from
being completely resolved, and even less in 5G and beyond
network slicing environment. Existing solutions suffer from
a number of limitations, which impedes their efficiency and
effectiveness. The complete isolation among slices advocated
by resource isolation based approaches (e.g., [11], [12]) may
lead to resource usage inefficiency or may not be possible to
realize due to lack of strong hardware isolation in the emerging
cloud-native platforms [13]. The ability of application-layer
DDoS attacks to mimic legitimate traffic endows them with the
capacity to elude detection by network traffic analysis based
solutions (e.g., [10], [14], [15]). Leveraging resource scaling
capability as a mitigation strategy by resource allocation-based
methods (e.g., [16]) rises the issue of reshaping an undetected
application-layer DDoS attack into an EDoS attack [17].
The emerging anomaly detection approaches (e.g., [18]–[20])
that exploit the potential of Deep Learning (DL) to identify
abnormal behavior based on anomalies detected in resource
usage and/or service performance metrics are a promising
direction to deal with EDoS attack. However, existing anomaly
detection approaches only consider temporal dependencies
between metrics and/or assume that sufficient amount of
historical data is available for training the DL models to

recognize normal behavior patterns.
Motivated by the above-discussed limitations of DL-based

anomaly detection approaches, the serious economic impacts
of EDoS attacks on cloud-native B5G networks, and the
limited research in addressing the EDoS issue in 5G network
slicing environment, we propose in this paper a novel AI-
powered framework that aims to proactively mitigate EDoS at-
tacks against network slicing. The proposed framework, coined
FortisEDoS, enables elastic cloud-native network slices pro-
viding 5G services on the edge while intelligently safeguarding
from malicious resource scaling requests caused by stealthy
application-layer DDoS attacks. It is worth noting that the
creation and deployment of network slices is beyond the scope
of this work. Additionally, and without loss of generality, we
consider that at least CN and service-level network functions
of a network slice are cloudified. FortisEDoS exploits both
temporal and spatial correlations among resource usage and
service performance metrics and adopt a dynamic threshold-
ing strategy to foster accurate discrimination of anomalous
status of a slice’s VNF under application-layer DDoS attack,
allowing effective deterring of malicious requests for scaling
VNF’s resources. FortisEDoS capitalizes on the promising
capabilities of emerging DL techniques, particularly Convo-
lutional Neural Networks (CNN), Recurrent Neural Networks
(RNN) and Graph Neural Networks (GNN), in uncovering
complex patterns to capture the spatio-temporal dependencies.
Furthermore, FortisEDoS leverages the concept of transfer
learning to facilitate the transfer of knowledge regarding the
normal VNF’s behavior acquired in a previously deployed slice
to a newly deployed slice, empowering effective identification
of anomalous VNF’s status caused by application-layer DDoS
attacks even when representative historical data of normal
behavior are scare. To the best of our knowledge, this is the
first contribution of deep transfer learning in tackling EDoS
attacks against network slicing.

The key contributions of this paper can be summarized as
follows:

• We propose FortisEDoS, a novel framework that inte-
grates a deep transfer learning model to empower highly
elastic and resilient B5G services, deployed as slices, that
can deliver superior quality of experience (QoE) while
being impervious to EDoS attacks.

• We build a new DL-powered forecast-based DDoS
anomaly detection model, coined CG-GRU, that allows
to discriminate anomalous VNF’s status caused by an
application-layer DDoS attack in order to prevent its
reshaping into EDoS attack. The model can effectively
identify anomalous resource usage and performance met-
rics of VNFs by measuring and comparing against a
dynamic threshold the error between the observed met-
ric’s values and the predicted ones. CG-GRU combines
the advantages of different deep neural network algo-
rithms to provide both feature extraction and forecasting
capabilities. Specifically, CNN, Graph Attention (GAT)
and Gated Recurrent Unit (GRU) algorithms are used
to extract relevant local features, spatial correlations and
time dependencies among VNF’s metrics, respectively,
and Multi-Layer Perceptron (MLP) algorithm is utilized

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

for enabling forecasting capability.
• We demonstrate how forecasting error heatmaps, created

using predictions generated by CG-GRU, can be used
to enable the explainability of decisions made by For-
tisEDoS about the legitimacy or maliciousness of the
observed metrics of a slice’s VNF, allowing to foster
trustworthiness in its decisions.

• We introduce the transfer learning concept into CG-
GRU to quickly and effectively defeat EDoS attacks in
newly deployed slices. This is done by embedding the
knowledge about normal VNF’s behavior learned by a
CG-GRU model associated to a VNF from a previously
deployed slice into the model of the new slice’s VNF.

• We develop an experimental testbed based on the cloud-
native platform Kubernetes to evaluate the effectiveness
of FortisEDoS in preventing malicious resource scaling
operations induced by application-layer DDoS attacks
launched against a virtualized Content Delivery Network
(vCDN) service. The experimental results demonstrate
the superiority of CG-GRU model in achieving high
overall attack detection performance with low computa-
tion/storage complexity, compared to baseline methods.
They show also the attack detection effectiveness and the
computational efficiency of the transfer learning-powered
CG-GRU model.

The remainder of the paper is organized as follows. Sec-
tion II discusses previous relevant works. Section III intro-
duces the proposed FortisEDoS framework, delineating its
architecture and the design of the deep transfer learning-
based DDoS anomaly detection model. Section IV describes
the experimental setup, detailing the implemented dataset
generation and model’s hyper-parameter tuning processes, and
provides a comprehensive analysis of the performance results.
Finally, Section V concludes the paper and highlights future
research directions.

For ease of reference, Table I summarizes the most impor-
tant abbreviations (upper part) and notations (lower part) used
in this paper.

II. RELATED WORK

Despite the research efforts devoted to deal with the DDoS
attacks in general and stealthy application-layer DDoS in
particular [21]–[24], very few contributions have focused on
tackling the issue in 5G network slicing environment. In what
follows, we review the main defense approaches proposed
in the literature to handle application-layer DDoS attacks,
considering either approaches that are specifically devised
or that may apply for 5G systems. Table II summarizes
the investigated defense solutions, highlighting the adopted
methodology, ML techniques used, and key limitations that
are either specific to each solution or common to all solutions
adhering to the same methodology.

A. Isolation based Solutions

Kotulski et al. [11] explored the use of host resource
isolation and network communication isolation as measures
to mitigate DDoS attack in 5G network slicing. Similarly,

TABLE I: Main nomenclature and notations used in the paper.

Notation Description
B5G 5G and Beyond
CNF Cloud-native Network Function
CNN Convolutional Neural Network

Conv1D one-dimensional Convolutional
DDoS Distributed Denial of Service

DL Deep Learning
EDoS Economical Denial of Sustainability
GAN Generative Adversarial Network
GAT Graph Attention Network
GNN Graph Neural Network
GRU Gated Recurrent Unit

LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
RNN Recurrent Neural Network
SLA Service Level Agreement

vCDN virtual Content Delivery Network
VNF Virtual Network Function
S The set of network slices
Vi The set of VNFs in slice Si

f i
j The VNF j in slice Si

X A multivariate time series
d The number of metrics (features) of a VNF

x(t) A d-dimensional vector representing the metrics
data observed on a VNF at time step t

x
(t)
i , x̂

(t)
i The actual and forecast value of the i-th

VNF’s metric at time step t

x̄
(t)
i The normalized value of a metric x

(t)
i

w The size of the look-back sliding window
h The length of the forecast horizon
τ The step length

Dtrain The training dataset
Dval The validation dataset
e
(t)
i The forecast error of the i-th VNF’s metric at time t
e(t) The global forecast error of a VNF at time t

e
(t)
s The smoothed global forecast error of a VNF at time t
ξs The smoothed global forecast errors of a VNF at time t

for the previous w time steps
ε The dynamic anomaly detection threshold

µ(.), δ(.) Mean and standar deviation functions

the work in [12] attempts to proactively mitigate DDoS
attacks in 5G core network slicing using inter- and intra-
slice isolation. The work demonstrates that complete isolation
among slices achieved by inter-slice isolation enables DDoS
attack mitigation. However, complete isolation may result in
inefficient resource usage. Furthermore, the recent trend to
evolve VNFs into Cloud-native Network Functions (CNFs),
where the network functions are running on containers, makes
the complete isolation hard to realize owing to the lack of
strong hardware isolation.

B. Network Traffic Analysis based Solutions

Thantharate et al. [14] and Kuadey et al. [25] applied,
respectively, Convolutional Neural Network (CNN) and Long
Short Term Memory (LSTM) deep learning techniques to
detect DDoS attacks in 5G network slicing. Nevertheless,
the two contributions do not consider low-rate DDoS attacks,
focusing only on high-rate DDoS attacks. In [26], multiple
machine learning (ML) and deep learning (DL) techniques
have been used to detect low-rate DDoS attacks in SDN-
based setting. The authors observed the superiority of the DL

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE II: Classification and gap analysis of existing application-layer DDoS and EDoS mitigation techniques.

LimitationsRef. Methodology Description ML
Model Specific Common

[11] Isolation
- Mitigate DDoS attack in 5G network

slicing using host resource and
network communication isolation

- Inefficient resource usage
- CNFs makes the complete

isolation hard to realize[12]
- Mitigate DDoS attack in 5G network slicing

using inter- and intra-slice isolation

[14] Network
Traffic
Analysis

- Detect high-rate DDoS attack in 5G network
slicing

CNN
- Do not consider low-rate

DDoS attacks - Can be escaped by
application-layer DDoS
attacks that can imitate
legitimate traffic

[25] LSTM

[26]
- Detect low-rate DDoS attacks in

a SDN-based setting MLP

[10] - Detect both low-rate and high-rate DDoS
attacks in a SDN-based setting

MLP
[15] GAN

[27] Resource
Allocation

- Mitigate low-rate DDoS attacks
by sacrificing the victim resources
in favor of the mitigation service

- Performance degradation - Risk of reshaping a DDoS
attack into an EDoS attack

- Resource starvation
- Indirect EDoS to co-hosted

slices[16]
- Mitigate low-rate DDoS attacks in container

-based cloud environment using a dynamic
resource allocation strategy

[28] Resource
Usage /
Performance
Analysis

- Detect EDoS attack in NFV-based
SONs using an entropy-based approach

- Entropy-based detection
approaches are vulnerable
to spoofing

- Assume that sufficient
amount of historical
data is available

[29]
- Detect EDoS attack on a Kubernetes

cluster using a supervised learning approach XGBoost
- Labeled data may be

scarce, expensive, or
unfeasible at scale

[18]

- Detect EDoS in an SDN-based cloud
environment using a reconstruction-based
anomaly detection approach

VAE +
GRU

- Only temporal dependencies
are considered

- Ineffective in detecting
low-rate DDoS attacks

- POT method fails when
there are many extreme
values

[19]

- Detect EDoS in an SDN-based cloud
environment using a reconstruction-based
anomaly detection approach and
nonparametric dynamic thresholding

GAN +
LSTM

- Only temporal dependencies
are considered

[20]

- Detect EDoS in an SDN-based cloud
environment using a forecasting-based
anomaly detection approach and
nonparametric dynamic thresholding

LSTM

model (i.e., Multi-Layer Perceptron(MLP)) compared to the
other ML techniques used in the paper. In the same vein,
the contributions in [10] and [15] demonstrated, respectively,
the potential of MLP and Generative Adversarial Network
(GAN) DL techniques in detecting both high-rate and low-rate
application-layer DDoS attacks based on analysis of network
traffic flows. However, identifying DDoS attacks by only
analyzing the characteristics collected from network flows
may not always be possible, particularly with the emergence
of stealthy application-layer DDoS attacks which focus on
depleting the server’s resources (e.g., CPU, memory, I/O)
while generating a traffic flow that imitates the legitimate one.

C. Resource Allocation based Solutions

Somani et al. [27] devised a DDoS mitigation approach
that ensures resource availability to mitigation service during
the attack by sacrificing victim service resources. This may
result in performance degradation, preventing legitimate users
from accessing the service. Li et al. [16] proposed a mitigation
strategy based on dynamic resource allocation to thwart low-
rate DDoS attacks in container-based cloud environment. The

mitigation strategy dynamically regulates the number of con-
tainer instances serving for different users and coordinates the
resource allocation between instances to maximize the quality
of service. However, the use of resource scaling approach
to mitigate DDoS attacks may result in resource starvation
and/or undesirable costs under DDoS attack. Indeed, the auto-
scaling capability can reshape a DDoS attack into Economical
Denial of Sustainability (EDoS) attack, which incurs economic
damages to service provider due to the increased elastic use of
resources as well as performance degradation [4]. Furthermore,
the interdependence between network slices due to virtual
network functions and infrastructure resources sharing rises
the risk of indirect EDoS [30]; that is, the direct DDoS
exhausts the resources of one slice, which may affect the
resources shared with other slices, impacting the performance
and availability of provided services.

D. Resource Usage / Performance Analysis based Solutions

The solutions in this category leverage new sources of
information, namely resource usage and/or performance of
service under attack, to discriminate malicious behavior caused

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

by DDoS attacks at application layer to prevent its reshaping
into EDoS attacks. The authors in [28] introduced two variants
of EDoS attack dedicated to NFV-based Self-Organizing Net-
works (SON), namely: Workload-based EDoS (W-EDoS) and
Instantiation-based EDoS (I-EDoS). An entropy-based EDoS
detection approach is proposed where a set of indicators (e.g.,
resource usage, application response time, number of VNF
instances and their productivity) is used to distinguish between
malicious and legitimate behaviors. However, entropy-based
detection approaches are vulnerable to spoofing, where an
attacker can make the entropy fit the expected distribution
during the DDoS attack [31]. In [29], XGBoost classifier
is used to detect EDoS attack on a Kubernetes cluster. The
XGBoost model is trained on labeled data to perform a binary
classification based on the statistical information (e.g., mean,
minimum, maximum) computed on response time, CPU load,
pod count and node count metrics. Nevertheless, in real-world
applications, labeled data may be scarce or expensive, and a
fully labeled data set on large scale may not be feasible. Su
et al. [32] devised OmniAnomaly, an unsupervised anomaly
detection approach that uses data’s stochasticity and temporal
dependence characteristics to learn the patterns of normal
behavior. The stochasticity and temporal dependence features
are extracted from multivariate time series using, respectively,
variational autoencoder (VAE) and gated recurrent unit (GRU)
techniques. The anomaly detection approach proposed in [32]
has been leveraged by the work in [18] to detect EDoS in an
SDN-based cloud environment. The detection approach allows
to define a dynamic threshold following the peaks over thresh-
old (POT) approach [33] to discriminate malicious traffic. It
is worth noting that the proposed solution has difficulties in
detecting low-rate DDoS attacks. Furthermore, POT method
may not work when there are many extreme values (or outliers)
which do not satisfy the generalized Patorley distribution
(GPD) [34]. The authors in [19] adopted MAD-GAN [35], a
GAN-based multivariate time series anomaly detection model,
to identify EDoS attack in an SDN-based cloud. The MAD-
GAN model uses LSTM algorithm to capture the temporal
correlation of time series distributions. The nonparametric
dynamic thresholding technique [36] is used to compute
the anomaly threshold for discriminating EDoS attack. Un-
like [18], [19], which adopt a reconstruction-based approach,
the work in [20] follows a forecasting-based approach to
counteract EDoS risk in an SDN-based cloud environment.
Specifically, the forecasting-based anomaly detection approach
proposed in [36] is leveraged, which uses LSTM and non-
parametric dynamic thresholding to identify anomalies. This
approach detects anomalies by measuring the error between
the observed metrics’ values and the predicted ones. However,
the anomaly detection models in [18]–[20] only consider
temporal dependencies while not explicitly addressing spatial
correlations among features. In fact, the resource usage and
performance metrics are very likely to impact each other; for
example, the increase in the CPU load will certainly affect the
service’s response time. This makes the spatial dependency a
valuable information that needs to be captured to improve the
detection performance. Different from these works, the model
we are proposing in this paper exploits both temporal and

spatial dependencies within the multivariate time series. We
leverage the potential of Graph Neural Networks (GNNs) to
model the spatial correlations. Furthermore, rather than using
a reconstruction-based approach as in [18], [19] and similar
to [20], we adopt a forecasting-based approach. Following this
approach, it is possible to build a multi-purpose model that
can serve not only for anomaly detection task but also for
proactive and dynamic resource allocation tasks, which will
inevitably reduce the cost of training and running different
models. Finally, the above mentioned solutions assume that
sufficient amount of historical data is available for training the
deep learning models to recognize normal behavior patterns,
which may not be the case for a newly deployed network
slice. To address this challenge, we exploit transfer learning
paradigm to leverage the knowledge gained by a model at a
network slice with enough data to improve the learning in the
new slice.

III. FORTISEDOS ELASTIC MOBILE VCDN FRAMEWORK

A. Framework Overview

In the following, we present FortisEDoS, a novel framework
that aims to enable elastic 5G network slicing while intelli-
gently safeguarding from malicious resource scaling requests
caused by stealthy application DDoS attacks. As illustrated in
Fig. 1, we consider a virtualized Content Delivery Network
(vCDN) provided as a service over a MEC-enabled 5G net-
work to deliver video content. It is worth mentioning that our
solution is generic and not tied to this specific use case. The
solely motivation behind considering the vCDN use case is
the foreseen growth in mobile video traffic, which is currently
estimated to account for 69% of all mobile data traffic and
forecast to increase to 79% in 2027, according to the recent
Ericsson Mobility Report [37].

The vCDN service provider, which could be a mobile
network operator (MNO) or a third party, takes advantages
of network slicing and Multi-access Edge Computing (MEC)
paradigms to offer vCDN services tailored to specific Service
Level Agreements (SLAs) with the vCDN customers (i.e.,
content providers). A vCDN service is dynamically deployed
on-demand as a slice into the MNO’s network and could
typically be distributed over multiple cloud domains. Each
slice is composed of a set of basic VNFs (e.g., streamers,
caches, transcoders) chained together to provide a vCDN
service instance. The vCDN slices can share 5G core network
(CN) functions (e.g., Access and Mobility Management Func-
tion (AMF) and (Session Management Function (SMF)) or
have their dedicated 5G CN functions that can be deployed in
the central cloud (e.g., User Plane Function (UPF)) or moved
downward to the edge (e.g., Intermediate UPF (I-UPF)) for
the sake of performance. Note that I-UPF and UPF are in
charge of steering the user plane traffic towards the targeted
CDN service and towards the data network, respectively. It is
worth mentioning that the provision of vCDN slices at the edge
contribute to CDN’s high performance, high throughput, and
low latency [38]. The VNFs of a vCDN slice can be deployed
over several edge compute nodes and the VNFs of different
vCDN slices can be co-located on the same edge compute

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

Video Source

Slice N's UEs

Slice 1's UEs N6

Central CloudEdge Cloud

gNB

MEC

5G CN
N6

vCDN Slice N

vCDN Slice 1
Streamer

(VNF)
Cache
(VNF)

N3
InternetTransport

Network

Streamer
(VNF)

Cache
(VNF)

I-UPF2

I-UPF1

N3

DDoS Traffic
Normal Traffic to Slice 1
Normal Traffic to Slice N

UPF User Plane Function
Auto-scaling

Module

AMF SMF

UPF2UPF1

I-UPF Intermediate UPF
AMF
SMF

Access and Mobility Mgmt. Function
Session Management Function

Attacker

DDoS Mitigator
Monitoring

System Admission
Controller

Monitoring Agent

Metrics

Scale Request

vC
D

N
 M

an
ag

em
en

t L
ay

er

Scale out/up

Legitimate
Malicious

Content Provider
(Origin Server)

Legend

Compute node

Model TrainerData
Pre-Processor Trained Model

Fig. 1: The overall architecture of FortisEDoS Elastic 5G vCDN Framework.

node. We assume a logical isolation level [39] between vCDN
slices instantiated on the edge infrastructure, where the vCDN
functions are dedicated to each vCDN slice, but the virtual
resources are shared.

During the operation of a vCDN slice, the user’s requests for
media content are served by the edge cache instance deployed
in his/her proximity if the content is available there, otherwise,
the content is retrieved from the origin server via the back-
haul network. A vCDN slice can be target of stealthy DDoS
attacks that can reshape into EDoS attacks due to the auto-
scaling capability. The attacker model considered in this study
is elaborated in Section III-B.

The FortisEDoS framework includes a vCDN Management
Layer that encompasses a set of modules providing required
functional capabilities to empower highly elastic and resilient
vCDN services that can deliver superior Quality of Experience
(QoE) while being impervious to EDoS attacks. The vCDN
Management Layer is capable of proactively mitigating EDoS
attacks by adopting a DL-powered forecasting-based approach
for detecting malicious scaling requests caused by application-
layer DDoS attacks. The forecasting problem formulation and
the methodology followed to achieve this goal are detailed
in Section III-C. In particular, the vCDN management layer
consists of the following core components:

• Monitoring System is constantly tracking relevant mon-
itoring information that can provide the actual state of
vCDN services. Data related to resource usage (e.g.,
CPU, memory, disk and network usage) and performance
(e.g., response time) metrics of the different vCDN slice’s
VNFs and their hosting edge nodes are collected as time
series via the deployed monitoring agents. The collected
monitoring data are used to drive the resource scaling
and anomaly detection decisions made by the auto-scaling
module and DDoS Mitigator, respectively.

• Auto-scaling Module dynamically expands or contracts
the capacity of a vCDN slice instance to adapt resources
to slice workload in order to satisfy the committed SLA.

The scaling decision occurs at VNF level based on
VNF performance, resource usage metrics provided by
the Monitoring System and the associated auto-scaling
policies. It is worth noting that a VNF can either be
scaled horizontally by increasing (scale out) or decreasing
(scale in) the number of VNF instances or vertically
by increasing (scale up) or decreasing (scale down) the
resources (e.g., memory, CPU, storage, network) used by
a VNF instance.

• Admission Controller is responsible for intercepting the
scaling-up/out requests triggered by the Auto-scaling
Module in order to delegate the scaling decision to the
DDoS Mitigator for validation.

• DDoS Mitigator leverages the potential of DL to auto-
matically detect whether the scaling request is due to
legitimate load or rather malicious workload caused by
application-layer DDoS attacks. It incorporates a DL-
based anomaly detection model, coined CG-GRU, which
can effectively identify anomalous resource usage and
performance metrics of VNFs and their hosting nodes
using a data-driven forecasting-based approach. In fact,
the anomalies are detected when the predicted metrics’
values deviate considerably from the observed ones. If
an anomaly is detected, the scaling operation is tagged
as malicious and will be refused by the Admission
Controller. Details on the proposed CG-GRU model and
the selection of the anomaly threshold will be provided
in the subsequent sections III-E and III-F.

• Data Pre-Processor is responsible for preparing the raw
time series data into appropriate format to fit for CG-
GRU model during training and inference phases. This
includes data cleansing, normalization, and segmentation
operations, as detailed in Section III-D. Note that the data
used for training the model includes only time series of
normal behavior.

• Model Trainer is in charge of building the CG-GRU
model to integrate in the DDoS Mitigator. This involves

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

tuning the model’s hyper-parameters, training the model
on a training dataset, and assessing its performances
on unseen data. We elaborate further on the strategies
adopted for fine-tuning the model’s hyper-parameters in
Section IV-C. In addition to supporting training from
scratch, a key feature of the Model Trainer is its ability
to train the CG-GRU model using transfer learning. This
feature is particularly crucial when there is a scarcity of
representative historical data for normal behavior, as is
often the case for newly deployed slices. We elaborate
further on the proposed transfer learning-based CG-GRU
model in Section III-G.

B. Attacker Model

In the context of this study, we assume that the attacker has
control over a subset of user equipments (UEs) that can legit-
imately use a 5G vCDN service (e.g., live network streaming
service) delivered via HTTP-based technologies. The attacker
aims at exhausting the vCDN slice’s resources (e.g., CPU,
memory, disk I/O, network I/O) to prevent legitimate users
from accessing the vCDN service or at the very least increase
the service response time, leading to SLA violation. To this
end, we assume that the attacker has the capability to carry
out application-layer DDoS attacks against the vCDN’s VNFs
exposed to end user for content delivery, such as the video
streamer VNF. Particularly, the attacker is able to launch both
high-rate and low-rate HTTP-based DDoS attacks. In high-rate
mode, the attacker mimics a flash-crowd event by flooding the
exposed service with a large number of legitimately formed
HTTP requests in a very short period of time. In the low-
rate mode, however, the attacker sets up multiple HTTP
connections with the exposed service by sending partial HTTP
requests at a very slow rate, which results in exhausting the
connection queue space.

We further assume that the attacker possesses the ability
to generate stealthier patterns of the application-layer DDoS
traffic that can fly under the radar of protection mechanisms
that detect DDoS attacks based solely on characteristics col-
lected from network flows [10]. Thus, the malicious traffic will
reach the exposed VNF and leads to request for provisioning
additional resources through auto-scaling capability, which
can result in undesirable costs and/or resource starvation,
impacting not only the vCDN slice under attack, but also the
other slices co-hosted on the same computing infrastructure.
By exploiting the auto-scaling capability, the attacker can
reshape the application-layer DDoS attack into an EDoS attack
to incur economic damages to vCDN service provider due to
the increased elastic use of resources as well as performance
degradation due to shared resource starvation.

C. Problem Formulation and Methodology

We consider a set of n slices S = {S1, S2, · · · , Sn}.
Each slice Si is composed of a set of m VNFs Vi =
{f i

1, f
i
2, · · · , f i

m}. As depicted in Fig. 1, the VNFs of a slice
can be deployed through several nodes and the VNFs of
different slices can be co-hosted on the same node.

Each VNF f i
j ∈ Vi is characterized by a set of features

x ∈ Rd representing the resource usage (e.g., CPU utiliza-
tion, memory utilization, system load) and performance (e.g.,
response time) metrics of the VNF. d refers to the dimension
of the features set (number of features) for the VNFs.

The VNF’s metrics recorded at regular intervals over a
period of time can be formulated as a multivariate time series
X = {x(1),x(2), · · · ,x(T)} ∈ RT×d, where T and d are
the length of the time series and the number of metrics,
respectively. Each step x(t) ∈ Rd in the time series is a
d-dimensional vector {x(t)

1 , x
(t)
2 , · · · , x(t)

d } representing the
metrics data observed on VNF at time t.

We aim to detect the application-layer DDoS attack by
identifying anomalies in the resource usage and performance
metrics of VNFs and their hosting nodes using a forecasting-
based approach, where an anomalous VNF’s status is detected
when the expected metrics values deviate greatly from the
measured ones. As each metric may not only depend on
its own historical values, but also on other metrics’ past,
we adopt a multivariate time series forecasting approach in
order to improve the metrics forecasts, and consequently the
anomaly detection accuracy. Given the observed metrics values
of previous w time steps x(t−w+1), · · · ,x(t), the multivariate
time series forecasting task aims to learn a model F : Rw×d 7→
Rh×d for predicting the future metrics values for the next h
time steps, denoted by x̂(t+1), · · · , x̂(t+h). It can be formally
written as

[x̂(t+h), · · · , x̂(t+1)] = F (x(t), · · · ,x(t−w+1)) (1)

Note that the forecasting model is trained to successfully
predict future metrics values from normal values by mini-
mizing the prediction error. Hence, during the inference, the
prediction error is expected to rise in the presence of abnormal
metrics values due to DDoS attack. Relying on this hypothesis,
we use the prediction error to measure the anomaly score,
which represents the deviation of true metrics values from the
predicted ones. The derived anomaly score is compared against
a detection threshold to determine whether the VNF status at
a given time step is anomalous or not; if the anomaly score
is above the detection threshold, the VNF status is flagged as
anomalous.

In the following, we provide details on how the forecasting
model is built and how the anomaly scores and detection
threshold are calculated. For the reader’s convenience, we have
summarized the key notations used in this paper in the lower
part of Table I.

D. Data Preprocessing

The data pre-processing module aims at preparing the raw
time series data into the appropriate format to fit for the
forecasting model during training and inference phases. Note
that the train dataset includes only time series data of normal
behavior.

Firstly, the raw time series data are cleaned by imputing
missing/infinity values. In this study, we leverage the Last
Observation Carried Forward (LOCF) method to impute the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

time series missing values with their corresponding last ob-
served value. The rationale behind using LOCF method is
its simplicity and the fact that very few missing data were
found in our dataset. However, more advanced imputation
methods can be adopted, such as those relying on Generative
Adversarial Networks (GANs) [40], to deal with high missing-
rate situation.

The raw time series data are then normalized using the Min-
Max scaling technique, which scales the values in each time
series to be in the range [0, 1]. The data normalization helps
in alleviating the impact of different scaling among collected
metrics, which improves the model stability and speed up the
training process. The normalized value x̄

(t)
i of a metric x

(t)
i

observed at time step t is calculated as follows:

x̄
(t)
i =

x
(t)
i −min(Xtrain)

max(Xtrain)−min(Xtrain)
(2)

min(Xtrain) and max(Xtrain) are, respectively, the minimum
value and the maximum value of the training set.

Finally, the raw time series data are segmented into a series
of sub-sequences by applying a sliding window technique.
As shown in Fig. 2, the training dataset is constructed as a
supervised dataset, where the inputs are the observed metrics
values of previous w time steps and the outputs are the future
values to forecast for the next h (= 1 in Fig 2) time steps.
Given a look-back sliding window of size w and step length
τ , the number of sub-sequences in the training dataset can be
calculated as:

|Dtrain| =
|Xtrain| − (w + h)

τ
+ 1 (3)

E. Forecasting Model Architecture

Fig. 2 illustrates the overall architecture of the proposed CG-
GRU forecasting model. It is an hybrid model that combines
the advantages of different deep neural network algorithms,
specifically CNN, GNN, RNN and MLP, to provide both
feature extraction and forecasting capabilities. Indeed, deep
learning techniques have proved their capability in unveiling
hidden patterns from a large-amount of time-varying multi-
dimensional data and achieving accurate decisions [41].

The feature extraction stage consists in capturing both
temporal and spatial dependencies within the multivariate time
series. Leveraging the high ability of CNN in extracting high-
level representations from data, the local useful features are
extracted from the pre-processed multivariate time series using
a one-dimensional Convolutional (Conv1D) layer. The result-
ing features are then fed into a Graph Attention (GAT) layer
to derive the spatial inter-dependencies between the VNF’s
metrics. Thanks to the attention mechanism of GAT, different
weights (i.e., attention coefficients) are assigned to each pair of
features, allowing to measure the degree of influence of VNF’s
metrics on each other. The features extracted by the GAT
layer are processed by multiple GRU layers to characterize the
temporal dynamics of the VNF’s metrics. The use of GRU is
motivated by their demonstrated effectiveness and efficiency in
modeling long-term temporal sequences owing to their ability

to remember relevant past observations while inducing reduced
computation costs and complexity.

The forecasting stage takes the spatio-temporal represen-
tations learned by the feature extraction block as inputs for
predicting the future VNF’s metrics values. It relies on a
fully-connected network comprising multiple fully-connected
layers.

1) Conv1D Layer: A Conv1D layer is employed for the
purpose of automatically extracting relevant local features of
the raw VNF’s metrics data within a sliding window. The local
features are obtained by first convolving the input data with
a learned convolution kernel and then applying a non-linear
activation function. The process of the Conv1D layer can be
formalized as:

hk = f(

d∑
i=1

Wik ∗ xi + bk) (4)

where f(.) is the non-linear activation function, xi is the
time series of the i-th VNF’s metric, and Wik is the k-th
convolution kernel corresponding to the i-th time series. bk
and hk denote, respectively, the bias and the learned feature
map of the k-th convolution kernel.

2) Graph Attention Layer: The values of the VNF’s metrics
are very likely to influence each other; for instance, the
increase in the number of service requests will certainly in-
creases the VNF’s CPU usage to handle the received requests.
Hence, capturing the spatial dependency among the VNF’s
metrics will help in achieving more accurate forecasts. To
this end, we leverage the effectiveness of graphs to model
relationships between entities and the potential of emerging
Graph Attention Networks (GATs) [42] to learn complex
relationships in graph-structured data while assigning varying
levels of importance to each relationship through attention
mechanism. Compared to previous graph-based methods, and
thanks to the attention mechanism, GATs have the advantage
of capturing the importance levels, being storage and com-
putationally efficient, not requiring prior knowledge of the
global graph structure, allowing inputs of variable sizes, and
providing the interpretability of the model. It is worth noting
that interpretability is a key property to foster trustworthy
ML-based systems by ensuring accountability, reliability and
transparency [43].

We incorporate a graph attention layer to model and capture
the causal relationships between the VNF’s metrics using a
graph structure where nodes represent the different VNF’s met-
rics and an edge between two nodes denotes the relationship
between the corresponding VNF’s metrics. The i-th node is
characterized by a feature vector vi containing the values of
the corresponding VNF’s metric across all w time steps. The
relationship between nodes is weighted according to learned
attention coefficients, which measure the degree of influence
of VNF’s metrics on each other through attention mechanism.
The output produced by the graph attention layer for each node
is calculated as follows:

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Feature Extraction Forecasting
Raw VNF's Metrics Data

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...

Conv1D
Layer GAT Layer

GRU
Layers

Fully-
Connected

Layers

Dynamic Threshold
Algorithm

...
......

Output

Forecast Errors

Threshold
Selection

Data Pre-processing

...

Fig. 2: The overall architecture of training CG-GRU model and selecting the dynamic anomaly threshold.

hi =σ
(d∑

j=1

αijvj

)
(5)

αij =softmax(oij) =
exp(oij)∑d
k=1 exp(oik)

(6)

oij =LeakyReLU(A⊤.(vi||vj)) (7)

where hi is the output of node vi with the same dimension, αij

is the normalized attention coefficient between nodes vi and
vj , and A ∈ R2w is a column vector of learnable parameters.
σ and LeakyReLU represent non-linear activation functions.
The symbols .⊤ and || denote the vector transpose and the
concatenation operator, respectively.

3) GRU & Dense Layers: The forecasting model is based
on a multi-layer stacked GRU architecture, which consists
of multiple GRU layers followed by multiple dense (i.e.,
fully connected) layers with non-linear activation functions.
It is worth mentioning that the stacked nature of the GRU
and dense layers coupled with the non-linear activation func-
tions facilitate capturing complex spatio-temporal relationships
existing among the VNF’s resource usage and performance
metrics, which positively influence the prediction accuracy.
Moreover, the use of GRU not only prevents the exploding
and vanishing gradient problems of RNNs, but also reduces
the complexity of the recurrent unit structure while achieving
comparable performance [44].

Each GRU layer contains several hidden units, each of
which consists of two gates, called reset gate (rt) and update
gate (zt), to update the hidden state. The reset gate forgets
irrelevant past information, while the update gate aims at
retaining relevant information from the previous time step.
Formally, the reset and update gates for time step t are
computed by:

zt =σ(Lzxt + Uzst−1 + bz) (8)
rt =σ(Lrxt + Urst−1 + br) (9)

where σ(.) denotes the sigmoid activation function, which
restricts the value of all element in reset gate and update
gate between 0 and 1 to capture short and long-term temporal
dependencies, respectively. Lz and Lr are the weight matrices
connecting the current time step input xt to the update gate
and reset gate, respectively. Meanwhile, Uz and Ur represent

the weight matrices connecting the previous hidden state st−1

to the update gate and reset gate, respectively. bz and br are
the bias vectors.

The hidden state st of a GRU unit can be computed based
on the previous hidden state st−1 and the candidate hidden
state s̃t as

s̃t =tanh(Lsxt + Us(rt ⊙ st−1)) (10)
st =(1− zt)st−1 + zts̃t (11)

where ⊙ denotes the element-wise multiplication. Ls and Us

are the weight matrices related to the current time step input
xt the previous hidden state st−1, respectively. bs is the bias
vector. Note that L∗, U∗ and b∗ are the learnable parameters.

F. Forecast-based DDoS Anomaly Detection

To set an appropriate threshold for detecting anomalous
VNF scaling requests due to application-layer DDoS attacks,
we adopt a dynamic thresholding methodology [34]. This
method allows to calculate an anomaly detection threshold
that is automatically adjusted according to the past smoothed
forecasting errors. It is worth noting that the key advantage
of the dynamic thresholding method is its reliance on a non-
parametric probability distribution estimation approach, which
avoids the limitations of traditional Gaussian assumptions on
the past smoothed forecasting error distribution.

The forecasting error of the i-th VNF’s metric at time step
t, e(t)i , is calculated by

e
(t)
i = |x(t+1)

i − x̂
(t+1)
i | (12)

where x
(t+1)
i and x̂

(t+1)
i are, respectively, the actual value and

forecast value of the i-th VNF’s metric at time step t.
Utilizing the metric-specific forecasting errors, the global

forecasting error of the VNF at time step t, e(t), is computed
as

e(t) =
1

d

d∑
i=1

e
(t)
i (13)

The dynamic threshold is derived using the
smoothed global forecasting errors at time step t,
ξs = [e

(t−w)
s , · · · , e(t−1)

s , e
(t)
s], where w is the historical

observing length. The exponentially weighted moving average

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

(EWMA) algorithm [45] is applied to smooth the global
forecasting errors, allowing to reduce the false positives. The
threshold ε is selected from the set:

ϵ = µ(ξs) + β ∗ δ(ξs) (14)

such that

ε = argmax(ϵ) =
∆µ (ξs) /µ (ξs) + ∆δ (ξs) /δ (ξs)

|ξa|+ |Eseq|2
(15)

where

∆µ (ξs) =µ (ξs)− µ ({es ∈ ξs | es < ε})
∆δ (ξs) =δ (ξs)− δ ({es ∈ ξs | es < ε})

ξa ={es ∈ ξs | es > ε}
Eseq =continuous sequences of ξa ∈ ξa

Note that ∆µ (ξs) and ∆δ (ξs) refer to the decrease in the
mean and the standard deviation of the global forecasting
errors, respectively. ξa represents all the global forecasting
errors that are above the dynamic threshold. β in Eq. (14) is
selected from an ordered set B of positive values representing
the standard deviations above µ (ξs). The process of training
CG-GRU model and selecting the dynamic anomaly threshold
ε is summarized in Algorithm 1.

Algorithm 1 CG-GRU Training and Anomaly Threshold
Selection.
Input:

Xtrain: The train multivariate time series
d: The number of metrics
w: The size of the look-back sliding window
h: The length of the forecast horizon
CGGRU(): The forecasting model architecture
valsplit: The ratio of training dataset used for validation

Output:
Mt: The trained model; ε: The anomaly threshold

▷ Data pre-processing phase
1: Dtrain ← SlidingWindow(Normalize(Xtrain), w, h)

▷ Model training phase
2: Mt ← Train(CGGRU(),Dtrain, valsplit)

▷ Threshold selection phase
3: Y ← []
4: for x, y in Dtrain do ▷ x ∈ Rw×d and y ∈ Rh×d

5: ŷ ←Mt(x) ▷ ŷ is the forecast values of the
actual values y

6: Y.append(ŷ)
7: end for
8: T ← |Dtrain|

▷ Calculate forecast errors per metric using Eq. (12)
9: {{e(t)i }

i=d
i=1}t=T

t=1 ← Pred Err(Y, Ŷ)
▷ Calculate the global forecast error using Eq. (13)

10: {e(t)}Tt=1 ← Global Err({{e(t)i }
i=d
i=1}t=T

t=1)
▷ Select threshold using Eq. (14) & Eq. (15)

11: ε← Find Epsilon(ewma({e(t)}Tt=1))
12: Return Mt, ε

The values of the VNF’s metrics at a time step t are flagged
as anomalous if the corresponding smoothed global forecasting
error e(t)s exceeds the calculated threshold. Algorithm 2 sum-
marizes the anomaly detection process using CG-GRU model.

Algorithm 2 CG-GRU based Anomaly Detection.
Input:

Dtest: The test dataset
d: The number of metrics
Mt: The trained CG-GRU model
ε: Anomaly threshold

Output:
Anom: Anomaly decisions on test dataset

1: for x, y in Dtest do
2: ŷ ←Mt(x)
3: {ei(t)}i=d

i=1 ← Pred Err(y, ŷ)

4: e(t) ← Global Err({e(t)i }
i=d
i=1)

5: e
(t)
s ← ewma(e(t)) ▷ Calculate the smoothed global fore-

casting error using EWMA algorithm
6: if e(t)s ≥ ε then
7: Anom[t]← 1
8: else
9: Anom[t]← 0

10: end if
11: end for
12: Return Anom

G. Transfer Learning empowered DDoS Anomaly Detection

The VNFs of a newly deployed vCDN slice will possibly
lack representative training data that capture all variations of
their normal behavior, resulting in cold-start problem [46]
which may lead to performance degradation of DDoS anomaly
detection. Moreover, waiting until getting sufficient data to
train the forecasting-based model from scratch for effective
representation of normal VNF’s behavior is time and resource
consuming. Considering the envisioned massive number of
slices that could be deployed, it is paramount to reduce the
(re)training time and cost to enable timely detection of attacks
and ensure service profitability.

To address the aforementioned issues, we leverage the
potential of transfer learning to exploit the knowledge gained
by a model in previously deployed slice (referred to as source
domain) for improving and accelerating the learning of a
model in a newly instantiated slice (denoted as target domain).
More specifically, we consider transferring knowledge regard-
ing feature representations, characterizing a normal behavior,
learned by the pre-trained model of the source domain to the
new model of the target domain. In fact, deep neural networks
are characterized by their ability to learn general features
(i.e., domain-independent) on the first layers and specific
features (i.e., domain-dependent) on the layers closer to the
output [47], allowing transferability of general features across
domains. Inspired by that, we perform the transfer learning
by initializing the feature extraction layers of the new CG-
GRU model with the weights inherited from the pre-trained
CG-GRU model. The fully-connected layers are replaced with
new ones that are fine-tuned (i.e., trained) on the target data to
make the model customized for the associated VNF. It is worth
noting that the weights of the feature extraction layers are
frozen during the fine-tuning phase to preserve the transferred
knowledge. An illustration of the proposed transfer learning
process is given in Fig. 3.

The capability of transferring previous knowledge and fine-
tuning only fully-connected layers results in fast training and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

improved detection performances of the new CG-GRU model.

Feature Extraction Layers Forecasting
Layers

Pr
e-

pr
oc

es
se

d
VN

F'
s

M
et

ric
s

D
at

a

O
ut

pu
t

Feature Extraction Layers Forecasting
Layers

Pr
e-

pr
oc

es
se

d
VN

F'
s

M
et

ric
s

D
at

a

O
ut

pu
t

Frozen Trainable

Knowledge transfer
Source Domain
Target Domain

Fig. 3: Illustration of the transfer learning process. The knowl-
edge on normal behavior representation obtained from model
trained in source domain is transferred to the new model in
the target domain.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of FortisEDoS, we built a
testbed based on Kubernetes (K8s)1 environment. As illus-
trated in Fig. 4, the testbed is composed of two OpenStack
cloud platforms interconnected via a secure communication
channel. Four VMs have been deployed on the first OpenStack
cloud to setup a K8s cluster with one master node and three
worker nodes. The K8s is used to deploy the vCDN slices,
where each slice consists of two CNFs, namely a video
streamer and a cache, chained together to provide an HTTP-
based on-demand video streaming service. The two CNFs are
deployed as K8s services running a NGINX web server on a
pod, and are spread over two worker nodes. The video streamer
service is exposed to the end user for content delivery, while
the cache service is only reachable from within the cluster.
Each vCDN slice instance has its own namespace to guarantee
isolation of API resources between slices.

A fifth VM, deployed on the second OpenStack cloud, is
used for running the Monitoring System and DDoS Mitigator;
they are instantiated within containers. The VM also serves
as a platform for training and testing the CG-GRU model
incorporated in the DDoS Mitigator. In this vein, different
open-source tools have been deployed on the VM to create the
training and testing pipeline, including Pytorch and Python.

The Monitoring System includes a “Metrics Collector”
which uses Prometheus API to extract the raw resource
usage and performance metrics from the vCDN slices’ CNFs

1https://kubernetes.io

and their hosting worker nodes. To this end, Prometheus
relies on different monitoring probes, including NGINX-to-
Prometheus log file exporter2, cadvisor3 and node-exporter4.
The Monitoring System offers the capabilities to generate on-
demand dataset for training and testing the CG-GRU model
or continuously scrape the metrics values to be consumed by
the trained CG-GRU model integrated in DDoS Mitigator for
real-time forecasting-based anomaly detection.

The Auto-scaling module is implemented using the K8s
built-in Horizontal Pod Autoscaling (HPA) functionality which
we extended with the event-driven scale feature provided by
the open-source KEDA5 tool. We defined different horizontal
scaling policies that can trigger a scaling operation to increase
the number of pod instances to handle the load on a CNF based
on observed per-pod metrics (e.g., CPU, RAM) or external
metrics obtained from Prometheus (e.g., number of HTTP
requests or response time).

B. Dataset Generation

Due to the lack of real data, we used our testbed to generate
realistic datasets to train and test the proposed anomaly
detection approach. In fact, we were unable to find public
datasets with relevant features and labeled EDoS/DDoS threats
to use as ground truth for assessing the solution performances.
Existing public datasets are either limited to network traf-
fic characteristics (e.g., CIC-IDS2017 and CSE-CIC-IDS2018
datasets6) or lack both application-level and (virtual) machine-
level features (e.g., SMD7, which only includes machine-level
metrics).

To generate the dataset, we have developed a normal load
generator that models the arrival times of video streaming
requests initiated by legitimate users according to Poisson
process with fixed hourly rate. Recall that the Poisson process
is based on the assumption that the times between successive
requests are exponentially distributed and independent [48].
Thus, the inter-arrival times are generated using the inverse
Cumulative Distribution Function (CDF) of the Poisson dis-
tribution as given by Eq. (16):

CDF−1 = − 1

λ
∗ ln(1− u) (16)

where λ denotes the expected average number of requests
generated per hour and u is a random number sampled between
0 and 1 by a uniform distribution. To characterize the change
of request arrival rates over the time that real-life VoD systems
exhibit [49], we generated different request patterns by varying
λ in various time intervals. Specifically, the value of λ is
randomly drawn from the set {90, 120, 130, 140}.

The normal load generator includes a python script that
controls the Selenium WebDriver8 [50] for automating the
loading and playback of the requested videos in a web browser

2https://github.com/martin-helmich/prometheus-nginxlog-exporter
3https://github.com/google/cadvisor
4https://github.com/prometheus/node exporter
5https://keda.sh
6https://www.unb.ca/cic/datasets/index.html
7https://github.com/NetManAIOps/OmniAnomaly
8https://www.selenium.dev

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

k8s node 3k8
s

m
as

te
r n

od
e

k8
s

no
de

 2

cAdvisor

Node
exporter

Prometheus

Metrics
Collector

DDoS Mitigator

Training & Testing
pipeline

Trained
model

Monitoring namespace vCDN namespace

Nginx log
exporter

HPA

Streamer

Cache

PyTorch
VM1

VM2

VM3

VM4
VM5

cAdvisor

Node
exporter
Nginx log
exporter

k8
s

no
de

 1

Fig. 4: The experimental testbed for evaluating FortisEDoS Framework.

(e.g., Firefox browser). To mimic a realistic behavior, the
generator has also the capability to approximate the “impatient
user” behavior where users abandon the video streaming
sessions before their end [51]. This has been implemented by
randomly varying the duration of the video streaming sessions.

To generate malicious load, we implemented the attack
agents using Slowloris9 tool for low-rate DDoS attacks and
Hulk10 tool for high-rate DDoS attacks. The DDoS attacks
are carried out against the exposed video streamer service.

The raw resource usage and performance metrics data have
been recorded from two vCDN slices by the Monitoring
System over a period of 5 days. A time series for each
resource usage and performance metric was recorded using
a data sampling period of 300s. The training data were
collected during the first 4 days of attack-free activity. The
5th day served to create the testing dataset which includes data
for normal activity as well as anomalous activity caused by
application-layer DDoS attacks executed on different periods
of the day. Specifically, three Hulk attacks with different
intensities and one Slowloris attack were launched. A training
dataset and a testing dataset, containing the raw multivariate
time series data, are generated for each vCDN slice’s CNF
with a total of 5401 and 2701 samples, respectively. During
training, 20% of samples in the training dataset are held
out for validation. To promote reproducibility and support
independent investigations beyond this study, we have made
the generated dataset publicly accessible11.

C. Model Training

It is well known that the architecture of a deep neural
network plays a crucial role in improving its performance [43].
Hence, we formulate the problem of finding the optimal model
architecture as a search problem (See Eq. (17)) that seeks

9https://github.com/gkbrk/slowloris
10https://github.com/grafov/hulk
11https://zenodo.org/record/8111592

to maximize the model’s performance by minimizing its loss
function on the validation dataset.

argminA = L(A,Dtrain,Dval)

s.t. A ∈ A
(17)

where A represents the search space of the possible ar-
chitectures (i.e., combination of hyper-parameters), and L(.)
measures the forecast loss error of the architecture A on the
validation dataset Dval after being trained on the training
dataset Dtrain.

The problem formulated in (17) is solved by tuning the
model’s hyper-parameters leveraging the grid search [52] and
ASHA [53] strategies. The ASHA strategy enables to integrate
early stopping into the hyper-parameter optimization process,
which allows to accelerate the process by terminating bad
performing trials early. The search space for finding the
best hyper-parameters for the forecast model includes the
learning rate of the optimizer, the dropout rate, the number
of GRU and fully-connected hidden layers, the number of
neurons per layer, the kernel size for CNN layer, the historical
window size w, and the batch size. Table III defines the
search space used to determine the optimal architecture of
the proposed CG-GRU model. Each possible architecture is
trained at most 100 epochs using Rectified Linear Unit (ReLU)
as the activation function, Adam as the optimizer and Mean
Squared Error (MSE) as loss function. The CG-GRU model
with the smallest forecast error on the validation set is used to
forecast the VNF’s resource usage and performance metrics.
The best performing model achieved a forecasting loss of
0.0361 (3.61%) on the validation set. The hyper-parameters
setting of the best model is reported in Table III.

D. Performance Metrics

To assess the effectiveness of FortisEDoS in detecting and
preventing fraudulent resource scaling requests caused by
application-layer DDoS attacks, we measure the performances

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

TABLE III: The search space for hyper-parameters tuning and
the best model configuration.

Hyper- Values Best
Parameter Configuration
Learning rate (0.01, 0.001, 0.0001) 0.001
Dropout rate (0.1, 0.2, 0.3) 0.2
Number of (1, 2, 3) GRU = 2
hidden layers Dense = 2
Neurons per (30, 45, 60, 75, 90) GRU = 90
hidden layer Dense = 60
Kernel size (2, 3, 4) 3
Window size w (30, 50, 80, 100) 80
Batch size (60, 90, 120, 150, 180) 150

of CG-GRU model in terms of forecasting accuracy and
attack detection. The forecasting accuracy is evaluated over
the training dataset using the Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE), which can be calculated by:

RMSE =

√√√√ 1

N

N∑
i=1

(x(t+1) − x̂(t+1))2 (18)

MAE =
1

N

N∑
i=1

|x(t+1) − x̂(t+1)| (19)

where x̂(t+1) and x(t+1) denote the predicted values of the
CNF’s metrics at time step t and the corresponding ground
truth, respectively. N is the number of samples in the dataset.
Note that the lower the RMSE and MAE, the higher the
forecasting accuracy is achieved.

The attack detection performances are assessed over the
testing dataset using the common metrics, namely: Precision,
Recall (aka sensitivity) and F1-score (denoted as F1). The
F1 metric is used to characterize the balance between the
precision rate and the recall rate. Note that an effective model
is the one providing the highest precision, recall and F1 values.
The metrics are measured using the formulas in Eq.20.

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 = 2× Recall × Precision

Recall + Precision

(20)

where TP (True Positive) represents the number of anoma-
lies that are correctly detected, FN (False Negative) denotes
the number of anomalies that are falsely detected as normal
samples, FP (Flase Positive) is the number of the normal
samples that are wrongly flagged as anomalous ones, and TN
(True Negative) refers to the number of the normal samples
that are correctly detected.

Besides its effectiveness, we evaluate the efficiency of For-
tisEDoS in terms of average training time, average inference
time and size of CG-GRU model.

To validate the effectiveness and efficiency of FortisEDoS,
we compare CG-GRU with the state-of-the-art LSTM-based

100 200 300 400 500 600

0.2
0.4
0.6
0.8

cpu usage (Train) y_true y_forecast

100 200 300 400 500 600

0.2
0.4
0.6
0.8

net in (Train) y_true y_forecast

100 200 300 400 500 600
0

0.2
0.4
0.6
0.8

net out (Train) y_true y_forecast

100 200 300 400 500 600

0.5

1

sockets avg (Train) y_true y_forecast

100 200 300 400 500 600
0

0.05

0.1

0.15

http response time (Train) y_true y_forecast

Fig. 5: Forecasting on validation data of video streamer CNF
of vCDN slice 1.

multivariate time series anomaly detection model proposed
in [36] and other baseline models derived from CG-GRU
and model in [36] using ablation and transplantation of 1D
Convolutional layer and/or GAT layers, respectively. Recall
that the model in [36] has been used in [20] for mitigating
EDoS attack in a SDN-based cloud environment.

The experiments are carried out on the fifth VM with 16-
cores Intel’s Skylake 2.4GHz CPU and 64GB RAM. To
avoid bias from randomness, we report the results of the best-
performing model over ten runs.

E. Performance Results

1) Forecasting Accuracy: In this section, we present the
evaluation results on the forecasting accuracy of the proposed
CG-GRU model. Fig. 5 reports the forecast values of some
metrics of the vCDN’s video streamer and their corresponding
ground truth values in the validation dataset for a forecasting
horizon of 5 minutes. We omitted the remaining metrics as
they are exhibiting the same results. As can been seen from
Fig. 5, CG-GRU is able to effectively predict the actual
values of a normal CNF’s status with high accuracy. The
model recorded a low prediction RMSE of 0.039 and MAE
of 0.1189 with a standard deviation of 0.005 on the validation
dataset. The high forecasting quality delivered by CG-GRU
model could be attributed to its capacity in capturing both
time dependencies and spatial correlations among CNF’s met-
rics. Similar observations hold true in Fig. 6 for the testing
dataset, where we can see that the video streamer’s metrics
are accurately predicted in absence of attacks. However, the
deviation between the forecast values and the real values are
highly pronounced during the application-layer DDoS attack
periods, represented by the highlighted red regions in Fig. 6.
The results uphold the hypothesis that the prediction error is
likely to increase significantly in the presence of abnormal
metrics values, making it a strong indicator of an ongoing

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

0 50 100 150 200 250
0

5

10

cpu usage (Test) y_true y_forecast

0 50 100 150 200 250
0
2
4
6
8

net in (Test) y_true y_forecast

0 50 100 150 200 250
0
2
4
6
8

net out (Test) y_true y_forecast

0 50 100 150 200 250
0

10

20

30

sockets avg (Test) y_true y_forecast

0 50 100 150 200 250
0

0.5

1

http response time (Test) y_true y_forecast

Fig. 6: Forecasting on testing data of the video streamer
CNF of vCDN slice 1. The three first highlighted red regions
correspond to Hulk attacks, while the last region represents
the Slowloris attack.

DDoS attack. Given the high forecasting accuracy of CNF’s
metrics during normal behavior and the notable increase in
prediction error when the CNF is under attack, it can be
concluded that CG-GRU model will be capable of effectively
detecting application-layer DDoS attacks while reducing the
number of false positives, as demonstrated in what follows.

F1 Precision Recall
80%

85%

90%

95%

100%

92
.3
7

86
.4
3

99
.1
8

90
.4
9

84
.9
7

97
.7
5

90
.1
5

83
.5
4

97
.5
4

89
.9
0

82
.9
2

98
.2
0

89
.9
0

82
.9
2

98
.2
0

89
.3
9

82
.4
7

97
.6
2

CG-GRU G-GRU GRU
CG-LSTM G-LSTM LSTM

Fig. 7: Attack Detection Performances.

2) Attack Detection Performances: We compare CG-GRU
with the LSTM-based multivariate time series anomaly de-
tection model proposed in [36]. Moreover, we conduct a layer
ablation study to assess the impact of the features extracted by
Conv1D, GAT and GRU layers on the DDoS attack detection
performance. To this end, we compare CG-GRU with the
following variants: (i) G-GRU, where we remove the Conv1D
layer; hence, the inputs to the model are the original data rather

than the convolved data; and (ii) GRU, where we remove both
1D convolutional layer and GAT, and only use the temporal
information extracted by GRU layers. Similar to G-GRU, GRU
model operates on the original data rather than the convolved
one. We also transplant the Conv1D layer and/or GAT layers
to LSTM model proposed in [36] to evaluate to which extent
they can affect the model’s performances.

The performances of the different models are evaluated over
the testing dataset using Precision, Recall and F1 metrics.

The results depicted in Fig. 7 demonstrate the superiority of
CG-GRU model in achieving the highest performance scores
compared to all other models. In fact, CG-GRU model exhibits
a high sensitivity in identifying anomalous CNF’s status while
yielding an acceptable Precision of 86.43% and a reasonable
F1 score of 92.37%. It is worth mentioning that in our
case a high Recall is preferred over a high Precision, as the
unsuccessful detection of anomalous CNF’s status may lead to
economical losses due to accepting resource scaling operations
caused by DDoS attacks. Compared with the LSTM-based
model proposed in [36], we observe that CG-GRU improves
the Precision, Recall and F1 scores by at least 3.96%, 1.56%
and 2.98%, respectively. This improvement is attributed to
the quality of the spatio-temporal features learned by the
feature extraction block, which allows better estimation of the
anomaly threshold for discriminating anomalous CNF’s status.
This statement is corroborated by the results of the ablation
study, which not only demonstrate the importance of capturing
both spatial and temporal dependencies within the multivariate
time series, but also reveal that the local features extracted
by Conv1D layer are beneficial to boost further the model
performances. Indeed, one-dimensional convolution operation
helps to reshape the original input data into a more relevant
representation format that is robust to possible noise in the
data. The results reported in Fig. 7 show that adding Conv1D
layer and GAT layers allows CG-GRU model to outperforms
the baseline GRU model, increasing the Precision, Recall and
F1 scores by at least 2.89%, 1.64% and 2.22%, respectively.

3) Model Computation & Storage Costs: In this section,
we explore the computation and storage overhead induced by
CG-GRU model and its counterparts. To this end, we measure
the average training time, the average inference speed, and
the model size. Fig. 8 reports the comparative results. We can
observe that GRU-based models are faster to train and make
inference, and require much less storage space than LSTM-
based models. This can be attributed to the fewer number of
parameters and gates used by GRU cells as compared to LSTM
cells to achieve the same task. The results in Fig. 8 show that
CG-GRU model brings up to 12.42%, 23.73% and 21.54%
reduction in training time, inference time and model size,
respectively, compared to the best-performing LSTM-based
model (i.e., CG-LSTM).

We can also notice that the higher attack detection perfor-
mances exhibited by CG-GRU model come at the expense
of increased computation and storage complexity compared
to the other GRU-based variants, owing to the added 1D
Convolutional layer and the GAT layers used for extracting
local features and spatial inter-dependencies. Nevertheless, the
additional cost remains within an acceptable range of no higher

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

CG
-GR

U
G-G

RU GR
U

CG
-LS

TM
G-L

ST
M

LST
M

240

260

280

300

320

275
270

250

314
308

286

T
ra
in
in
g
ti
m
e
(s
)

(a) Training time

CG
-GR

U
G-G

RU GR
U

CG
-LS

TM
G-L

ST
M

LST
M

3,000

4,000

5,000

4,234
4,108

3,772

5,551
5,423

5,128

In
fe
re
n
ce

ti
m
e
(m

s)
(b) Inference time

CG
-GR

U
G-G

RU GR
U

CG
-LS

TM
G-L

ST
M

LST
M

250

300

350

400

450

368 367

340

469 467

441

M
o
d
el

si
ze

(K
B
)

(c) Model size

Fig. 8: Computation and storage costs of the models.

than 10% , 12.25% and 8.24% in terms of training time,
inference time, and model size, respectively.

Hence, considering both attack detection performances and
computation/storage cost, CG-GRU model provides the best
performance-cost balance. This makes CG-GRU model an
adequate solution to achieve accurate and real-time detection
of fraudulent resource scaling requests associated to DDoS
attacks in a cost-effective way, which translate to better
economic sustainability and higher profitability.

0 50 100 150 200 250
Time step

cpu_usage
cpu_usage_sys

cpu_usage_user
mem_usage
net_in_pkts

net_out_pkts
net_in_bytes

net_out_bytes
http_resp_time

http_req_rate
sockets_avg
Multivariate

C
N

F'
s

m
et

ric

Hulk1 Hulk2 Hulk3 Slowloris

Low Medium High
Forecast error

Fig. 9: A heat map visualization of forecasting errors per
CNF’s metric for interpretability.

4) Attack Interpretability & Root Cause: The ability to
explain the decision made by a AI-powered system is instru-
mental for domain experts to interpret its output and under-
stand the cause-and-effect relationship between the input data
and the generated output, allowing to foster trustworthiness
in its decisions [43]. In this vein, we use the forecasting
error heatmap to elucidate the judgment made by the DDoS
Mitigator module about the legitimacy or maliciousness of the
observed resource usage and performance metrics of a vCDN’s
CNF. Using the predictions generated by CG-GRU model
and the corresponding actual values of the CNF’s metrics,
we create a heatmap of the forecasting error per metric (see

Eq. 12) and the global forecasting error (see Eq. 13) over the
time.

Fig. 9 depicts the forecasting error heatmap of slice 1’s
video streamer for each time step of the testing dataset, with
the x-axis representing the time steps and the y-axis indicating
the CNF’s metrics. The bottom row in the heat map corre-
sponds to the global forecasting error on the multivariate time
series. The forecasting error intensity is color-encoded, with
zero error as dark blue and becoming dark red as it gets larger.
As shown in Fig. 9, the visualization of the forecasting error
heatmap provides tangible and intuitive explanations, enabling
the domain experts to ascertain the DDoS Mitigator’s decision
and to quickly identify the attack patterns and the CNF’s
metrics that have most contributed to the global forecasting
error. We can observe that the largest forecasting errors are
recorded during the attacks’ periods, with clear segregation
between Hulk and Slowloris patterns. The attack patterns in
the heatmap can serve as a visual signature of the attack,
allowing to determine the CNF’s metrics that are impacted by
the attack. Those metrics are considered the most important
for recognizing the attack. As visualized in Fig 10, we found
that the top three CNF’s metrics contributing to the global
forecasting error when a Hulk attack is underway are (1)
HTTP request rate, (2) average number of open sockets, and
(3) average CPU usage at the user level, while the top three
CNF’s metrics impacted by Slowloris attack are (1) average
number of open sockets, (2) average number of bytes sent
by the CNF, and (3) number of packets received by the CNF.
The obtained results are in compliance with the nature of Hulk
and Slowloris attacks. In fact, Hulk is a high-rate application-
layer DDoS attack that generates a high volume of unique
and obfuscated HTTP GET requests, hence the high HTTP
request rate, number of open sockets and CPU utilization to
process those requests. Meanwhile, Slowloris is a low-rate
application-layer DDoS attack that aims to make the service
inaccessible by holding multiple connections open a long time,
which explains the high effect on the number of open sockets.

The difference between Hulk and Slowloris behaviors is fur-
ther corroborated by the global forecasting error experienced
during the attack period. As shown in Fig. 9 and Fig. 10,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

the global forecasting error is more pronounced during Hulk
attack. In our experiments, an average global forecasting error
of 18.95 and 1.06 is caused by Hulk and Slowloris attack,
respectively. It is worth mentioning that despite the stealthiness
of Slowloris attack, our solution was able to recognize it.

Hulk Slowloris
Attack

cpu_usage
cpu_usage_sys

cpu_usage_user
mem_usage
net_in_pkts

net_out_pkts
net_in_bytes

net_out_bytes
http_resp_time

http_req_rate
sockets_avg
Multivariate

C
N

F'
s

m
et

ric

Lo
w

M
ed

iu
m

H
ig

h
Fo

re
ca

st
 e

rr
or

Fig. 10: The visual signature of Hulk and Slowloris attacks
using the forecast errors heat map.

5) Effectiveness of Transfer Learning: To test the effec-
tiveness of applying transfer learning in terms of both attack
detection performances and training time, we transfer the CG-
GRU model trained on data collected from the video streamer
CNF of vCDN slice 1 to a newly deployed video streamer CNF
of vCDN slice 2. For brevity, let vStreamer1 and vStreamer2
denote the video streamer CNF of vCDN slice 1 and vCDN
slice 2, respectively. Unlike vStreamer1, only few interactions
have been performed between the simulated legitimate users
(through our normal load generator) and vStreamer2 and with
access to the same video file. Hence, the training dataset
collected from vStreamer2 is not representative of a normal
behavior.

To build the CG-GRU model for vStreamer2 using transfer
learning, denoted as TL-CG-GRU, we freeze the weights in
1D Convolutional, GAT and GRU layers and only fine-tune the
fully-connected layers on vStreamer2’s training dataset. For
comparison, we train another CG-GRU model for vStreamer2
from scratch using its training dataset (hereafter denoted
as CG-GRU-vS2). Furthermore, the performances of TL-
CG-GRU are compared against those of using directly the
vStreamer1’s model without fine-tuning (hereafter referred to
as CG-GRU-vS1). This allows to assess the importance of
model adaptation to data in the target domain (vStreamer2’s
training data in our case).

Fig. 11 reports the attack detection performance indicators
(i.e., F1, Precision and Recall) over Streamer2’s testing dataset
as well as the training time required to build the model. The
results demonstrate the superiority of the transferred model
TL-CG-GRU in boosting the detection performance while
considerably reducing the training overhead.

We observe that while both CG-GRU-vS1 and CG-GRU-
vS2 can identify anomalous vStreamer2’s status with an
acceptable sensitivity of above 91%, they generate a large
number of false alarms. This low precision is expected as

F1 Precision Recall

40 %

60 %

80 %

100 %

Training time
50 s

100 s

150 s

200 s

250 s

59
.5
5

44
.5
7

91
.1
1

66
.6
7

51
.8
5

93
.3
3

83
.6
7

77
.3
6

91
.1
1

243

94

CG-GRU-vS1 CG-GRU-vS2 TL-CG-GRU

Fig. 11: The performances and training time of CG-GRU
model with and without transfer learning.

CG-GRU-vS1 has not seen the training data of vStreamer2
and due to the fact that CG-GRU-vS2 has been trained from
scratch with vStreamer2’s data which lack representativity
of a video streamer CNF’s normal behavior. By embedding
the prior knowledge (features) on normal behavior learned
from vStreamer1’s model and updating the weights of the
forecasting layers to adapt to the specific vStreamer2’s data,
TL-CG-GRU has considerably lowered the number of false
positives, achieving a gain of 32.79% and 25.51% in precision
compared to CG-GRU-vS1 and CG-GRU-vS1, respectively.
This yields a significantly increased overall attack detection
performance greater than 83%, resulting in up to 24.12% and
17% improvement compared to CG-GRU-vS1 and CG-GRU-
vS2, respectively. The obtained results support our idea that
the spatio-temporal features derived by the feature extraction
layers are more generic and therefore can be transferred among
CNFs of different slices, while the weights of the forecasting
layers are more specific to the source CNF’s behavior, and
have to be retrained after transfer to adapt to the target CNF’s
behavior.

In addition to its effectiveness in discriminating anomalous
CNF’s status caused by application-layer DDoS attacks, TL-
CG-GRU substantially speeds up the training process, decreas-
ing the time required to train the CG-GRU-vS2 model from
scratch by at least 61%. The computational efficiency of TL-
CG-GRU is attributed to reuse of knowledge regarding feature
representations, which allows to reduce the number of model’s
parameters (weights of forecasting layers in our case) to update
during the fine-tuning phase.

V. CONCLUSION

In this paper, we proposed FortisEDoS, a novel framework
for enabling highly elastic B5G services while being immune
to EDoS attacks. FortisEDoS achieves its goal by (i) integrat-
ing CG-GRU, a new DL-powered DDoS anomaly detection
model which exploits the forecasting errors between the ob-
served VNF’s metrics and the predicted ones to determine
malicious VNF scaling requests due to stealthy application-
layer DDoS attacks; and (ii) adopting the concept of transfer

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

learning to yield effective detection of EDoS attack in newly
deployed slices. The experimental results demonstrated the
superior performance of the proposed solution in accurately
detecting EDoS attack and confirmed the benefit of transfer
learning in boosting both attack detection effectiveness and
training speed when representative historical data of normal
behavior are scare. The explainability of decisions made about
the legitimacy or maliciousness of a VNF’s status using fore-
casting errors heatmaps is another key capability provided by
FortisEDoS to foster trust in its decisions. Moreover, adopting
a forecasting-based anomaly detection approach makes CG-
GRU a multi-purpose model that can serve not only for
application-layer DDoS anomaly detection task but also for
proactive and dynamic resource allocation tasks, allowing to
reduce the cost of training and running several models serving
different tasks.

Given the potential occurrence of false alarms, preventing
a scaling up operation when the VNF’s status is flagged
as anomalous may result in a reverse effect, yielding neg-
ative impact on service level performances. To deal with
this challenge, we intend to extend the capabilities of For-
tisEDoS to provide a mitigation strategy that intelligently
decide when and how much of resources to be provisioned
so that the required SLA is guaranteed while minimizing
the EDoS attack damage. Another avenue of research is to
devise an advanced mechanism for selecting the appropriate
VNFs/slices for knowledge transfer. Furthermore, combining
transfer learning with federated learning to empower privacy-
preserving EDoS mitigation is another interesting research
direction.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
Project 6Genesis Flagship (Grant No. 346208), the EU’s
Horizon 2020 research and innovation programme under the
INSPIRE-5Gplus project (Grant No. 871808), and the EU’s
HE research and innovation programme HORIZON-JU-SNS-
2022 under the RIGOUROUS project (Grant No. 101095933).
The paper reflects only the authors’ views. The Commission
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] C. Benzaid, T. Taleb, and M. Z. Farooqi, “Trust in 5G and Beyond
Networks,” IEEE Network Magazine, vol. 35, no. 3, pp. 212 – 222,
May 2021.

[2] 3GPP TS 23.501 V17.5.0, “System Architecture for the 5G System
(5GS); Stage 2 (Release 17),” June 2022.

[3] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429 – 2453, March 2018.

[4] A. Bremler-Barr, E. Brosh, and M. Sides, “DDoS Attack on Cloud Auto-
Scaling Mechanisms,” in Proc. of the IEEE Int. Conf. on Computer
Communications (INFOCOM), May 2017, pp. 1 – 9.

[5] NGMN, “5G Security Recommendations Package #2: Network Slicing,”
Apr. 2016.

[6] T. Taleb, P. Frangoudis, I. Benkacem, and A. Ksentini, “CDN Slicing
over a Multi-Domain Edge Cloud,” IEEE/ACM Trans. Mobile Comput-
ing, vol. 19, no. 9, pp. 2010 – 2027, Sep. 2020.

[7] R. Sedar, F. V.-G. C. Kalalas, L. Alonso, and J. Alonso-Zarate, “A
Comprehensive Survey of V2X Cybersecurity Mechanisms and Future
Research Paths,” IEEE Open Journal of the Communications Society,
vol. 4, pp. 325 – 391, Jan. 2023.

[8] U. Inayat, S. M. M. F. Zia, H. M. Khalid, and M. Benbouzid, “Learning-
based Methods for Cyber Attacks Detection in IoT Systems: A Survey
on Methods, Analysis, and Future Prospects,” Electronics, vol. 11, no. 9,
pp. 1 – 20, May 2022.

[9] A. S. Musleh, H. M. Khalid, S. M. Muyeen, and A. Al-Durra, “A
Prediction Algorithm to Enhance Grid Resilience Toward Cyber Attacks
in WAMCS Applications,” IEEE Systems Journal, vol. 13, no. 1, pp. 710
– 719, March 2019.

[10] C. Benzaid, M. Boukhalfa, and T. Taleb, “Robust Self-Protection Against
Application-Layer (D)DoS Attacks in SDN Environment,” in Proc. of
IEEE Wireless Communications and Networking Conf. (WCNC), May
2020, pp. 1 – 6.

[11] Z. Kotulski, T. Nowak, M. Sepczuk, M. Tunia, R. Artych, and et al., “On
End-to-End Approach for Slice Isolation in 5G Networks. Fundamental
Challenges,” in Proc. of the Federated Conf. Comput. Sci. Inf. Syst., Sep.
2017, pp. 783 – 792.

[12] D. Sattar and A. Matrawy, “Towards Secure Slicing: Using Slice
Isolation to Mitigate DDoS Attacks on 5G Core Network Slices,” in
Proc. of the 2019 IEEE Conf. on Communications and Network Security
(CNS), June 2019, pp. 82 – 90.

[13] C. Benzaid, T. Taleb, and J. Song, “AI-based Autonomic & Scalable
Security Management Architecture for Secure Network Slicing in B5G,”
IEEE Network Magazine, vol. 36, no. 6, pp. 165 – 174, Nov./Dec. 2022.

[14] A. Thantharate, R. Paropkari, V. Walunj, C. Beard, and P. Kankariya,
“Secure5G: A Deep Learning Framework Towards a Secure Network
Slicing in 5G and Beyond,” in Proc. of the 10th Annual Computing and
Communication Workshop and Conf. (CCWC), Jan. 2020, pp. 0852 –
0857.

[15] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, “Adversarial
Deep Learning Approach Detection and Defense against DDoS Attacks
in SDN Environments,” Future Generation Computer Systems, vol. 125,
pp. 156 – 167, Dec. 2021.

[16] Z. Li, H. Jin, D. Zou, and B. Yuan, “Exploring New Opportunities to
Defeat Low-Rate DDoS Attack in Container-Based Cloud Environment,”
IEEE Trans. on Parallel and Distributed Systems, vol. 31, no. 3, pp. 695
– 706, March 2020.

[17] R. S. Silva, C. C. Meixner, R. S. Guimarães, T. Diallo, B. O. Garcia,
L. F. M. de Moraes, and M. Martinello, “REPEL: A Strategic Approach
for Defending 5G Control Plane From DDoS Signalling Attacks,” IEEE
Transactions on Network and Service Management, vol. 18, no. 3, pp.
3231 – 3243, Sept. 2021.

[18] P. T. Dinh and M. Park, “R-EDoS: Robust Economic Denial of Sustain-
ability Detection in an SDN-Based Cloud Through Stochastic Recurrent
Neural Network,” IEEE Access, vol. 9, pp. 35 057 – 35 074, Feb. 2021.

[19] ——, “Economic Denial of Sustainability (EDoS) Detection using
GANs in SDN-based Cloud,” in Proc. of the 2020 IEEE Eighth Int.
Conf. on Communications and Electronics (ICCE), Jan. 2021, pp. 135
– 140.

[20] ——, “Dynamic Economic-Denial-of-Sustainability (EDoS) Detection
in SDN-based Cloud,” in In Proc. of the Fifth International Conf. on
Fog and Mobile Edge Comput. (FMEC), Apr. 2020, pp. 62 – 69.

[21] A. Praseed and P. S. Thilagam, “DDoS Attacks at the Application
Layer: Challenges and Research Perspectives for Safeguarding Web
Applications,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 661
– 685, Feb. 2019.

[22] N. Agrawal and S. Tapaswi, “Defense Mechanisms Against DDoS At-
tacks in a Cloud Computing Environment: State-of-the-Art and Research
Challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4,
pp. 3769 – 3795, Fourthquarter 2019.

[23] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, “Low-Rate DoS Attacks,
Detection, Defense, and Challenges: A Survey,” IEEE Access, vol. 8,
pp. 43 920 – 43 943, Feb. 2020.

[24] N. Tripathi and N. Hubballi, “Application Layer Denial-of-Service
Attacks and Defense Mechanisms: A Survey,” ACM Comput. Surv.,
vol. 54, no. 4, pp. 86:1 – 86:33, Apr. 2021.

[25] N. A. E. Kuadey, G. T. Maale, T. Kwantwi, G. Sun, and G. Liu,
“DeepSecure: Detection of Distributed Denial of Service Attacks on
5G Network Slicing – Deep Learning Approach,” IEEE Wireless Com-
munications Letters, vol. 11, no. 3, pp. 488 – 492, March 2022.

[26] J. A. Pérez-Dı́az, I. A. Valdovinos, K. K. R. Choo, and D. Zhu, “A
Flexible SDN-Based Architecture for Identifying and Mitigating Low-
Rate DDoS Attacks Using Machine Learning,” IEEE Access, vol. 8, pp.
155 859 – 155 872, Aug. 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

[27] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“Scale Inside-Out: Rapid Mitigation of Cloud DDoS Attacks,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp.
959 – 973, Nov.-Dec. 2018.

[28] M. A. S. Monge, J. M. Vidal, and G. M. Perez, “Detection of Economic
Denial of Sustainability (EDoS) Threats in Self-Organizing Networks,”
Computer Communications, vol. 145, pp. 284 – 308, Sept. 2019.

[29] R. B. David and A. Bremler-Barri, “Kubernetes Autoscaling: YoYo
Attack Vulnerability and Mitigation,” in Proc. of the 11th Int. Conf.
on Cloud Computing and Services Science (CLOSER), Apr. 2021, pp.
34 – 44.

[30] G. Somani, M. S. Gaur, and D. Sanghi, “DDoS/EDoS Attack in Cloud:
Affetcting Everyone out There!” in Proc. of the 8th Int. Conf. on Security
of Information and Networks (SIN’15), Sept. 2015, pp. 169 – 176.

[31] I. Ozçelik and R. R.Brooks, “Deceiving Entropy based DoS Detection,”
Computers & Security, vol. 48, pp. 234 – 245, Feb. 2015.

[32] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust Anomaly
Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network,” in Proc. of the 25th ACM SIGKDD International Conf.
on Knowledge Discovery & Data Mining, July 2019, pp. 2828 – 2837.

[33] M. R. Leadbetter, “On a Basis for ‘Peaks over Threshold’ Modeling,”
Statist. Probab. Lett., vol. 12, pp. 357 – 362, Oct. 1991.

[34] J. Yu, Y. Song, D. Tang, D. Han, and J. Dai, “Telemetry Data-
Based Spacecraft Anomaly Detection With Spatial–Temporal Genera-
tive Adversarial Networks,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1 – 9, Apr. 2021.

[35] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S. Ng, “MAD-GAN:
Multivariate Anomaly Detection for Time Series Data with Generative
Adversarial Networks,” in Proc. of the 28th Int. Conf. on Artificial
Neural Networks and Machine Learning – ICANN 2019: Text and Time
Series, Sept. 2019, pp. 703 – 716.

[36] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting Spacecraft Anomalies using LSTMs and Nonpara-
metric Dynamic Thresholding,” in Proc. of the 24th ACM SIFKDD Int.
Conf. on Knowledge Discovery & Data Mining, Jul. 2018, pp. 387 –
395.

[37] Ericsson, “Ericsson Mobility Report,” Jun. 2022.
[38] C. Benzaid, T. Taleb, A. Sami, and O. Hireche, “A Deep Transfer

Learning-powered EDoS Detection Mechanism for 5G and Beyond Net-
work Slicing,” in IEEE Global Communications Conf. (Under Review),
Dec. 2023.

[39] GSMA, “NG. 116 - Generic Network Slice Template, Version 5.0,” Jun.
2021, p. 68.

[40] Y. Zhang, B. Zhou, X. Cai, W. Guo, X. Ding, and X. Yuan, “Missing
Value Imputation in Multivariate Time Series with End-to-End Gener-
ative Adversarial Networks,” Information Sciences, vol. 551, pp. 67 –
82, Apr. 2021.

[41] C. Benzaid and T. Taleb, “AI for Beyond 5G Networks: A Cyber-
Security Defense or Offense Enabler?” IEEE Network Magazine, vol. 34,
no. 6, pp. 140 – 147, Nov./Dec. 2020.

[42] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in Proc. of the 6th International
Conf. on Learning Representations (ICLR), Apr./May 2018, pp. 1 – 12.

[43] C. Benzaid and T. Taleb, “AI-driven Zero Touch Network and Service
Management in 5G and Beyond: Challenges and Research Directions,”
IEEE Network Magazine, vol. 34, no. 2, pp. 186 – 194, Mar./Apr. 2020.

[44] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the Prop-
erties of Neural Machine Translation: Encoder–Decoder Approaches,” in
Proc. of SSST-8, Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, Oct. 2014, pp. 103–111.

[45] J. S. Hunter, “The Exponentially Weighted Moving Average,” Journal
of Quality Technology, vol. 18, no. 4, pp. 203 – 210, Oct. 1986.

[46] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing Cold-
Start Problem in Recommendation Systems,” in Proc. of the 2nd Int.
Conf. on Ubiquituous Information Management and Communication
(ICUIMC’08), Jan. 2008, pp. 208 – 211.

[47] C. T. Nguyen, N. V. Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang,
D. N. Nguyen, Q.-V. Pham, D. Niyato, E. Dutkiewicz, and W.-J. Hwang,
“Transfer Learning for Wireless Networks: A Comprehensive Survey,”
Proceedings of the IEEE, vol. 110, no. 8, pp. 1073 – 1115, Aug. 2022.

[48] A. Y. Khinchin, Mathematical Methods in the Theory of Queuing.
Dover Publications, 2013.

[49] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube Traffic Character-
ization: A View from the Edge,” in Proc. of the 7th ACM SIGCOMM
Conf. on Internet Measurement (IMC’07), Oct. 2007, pp. 15 – 28.

[50] S. S. Salunke, Selenium Webdriver in Python: Learn with Examples.
CreateSpace Independent Publishing Platform, 2014.

[51] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding User
Behavior in Large-Scale Video-on-Demand Systems,” ACM SIGOPS
Operating Systems Review, vol. 40, no. 4, pp. 333 – 344, Oct. 2006.

[52] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random
Search, Genetic Algorithm: A Big Comparison for NAS,” arXiv, vol.
abs/1912.06059, 2019.

[53] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur,
M. Hardt, B. Recht, and A. S. Talwalkar, “A System of Massively
Parallel Hyperparameter Tuning,” in Proc. of the 3rd Machine Learning
and Systems Conf. (MLSys), March 2020, pp. 230 – 246.

Chafika Benzaı̈d is currently a senior research
fellow at Faculty of Information Technology and
Electrical Engineering, University of Oulu, Finland.
Between Nov. 2018 and Dec. 2021, she has been
senior researcher at School of Electrical Engineer,
Aalto University, Finland. Prior to that, she was
working as an associate professor at Computer Sci-
ence Department, University of Sciences and Tech-
nology Houari Boumediene (USTHB), Algeria. She
received her Engineer degree in software engineering
with distinction, Magister and “Doctorat ès Sci-

ences” degrees in Programming & Systems from USTHB, in 2000, 2003 and
2009, respectively. Dr Benzaid’s research interest lies in the field of 5G/6G,
SDN, Network Security, AI Security, and AI/ML for zero-touch security
management. She is an ACM professional member. She serves/served as a
TPC chair and member for several international conferences and as a reviewer
for several international journals.

Tarik Taleb is currently a Professor at University of
Oulu, Finland. He is the founder and director of the
MOSA!C Lab (www.mosaic-lab.org). Between Oct.
2014 and Dec. 2021, he was a Professor at Aalto
University. Prior to that, he was a senior researcher
and 3GPP standards expert at NEC Europe Ltd.,
Germany. He also worked as assistant professor at
Tohoku University, Japan. He holds a B.E. degree in
information engineering, and M.Sc. & Ph.D. degrees
in information sciences from Tohoku University. His
research interests lie in the field of Telco Cloud.

Ashkan Sami is a Professor of Computer Science at
Edinburgh Napier University and head of Computer
Science subject group which is one of the largest
computer science departments in U.K. Previously,
Ashkan was the head of CSE and IT department
and professor at Shiraz University. Ashkan teaches
and conducts research on Cyber Security, Empirical
Software Engineering, Applied AI and Data Science.
He obtained his B.S. from Virginia Tech; U.S.A. and
PhD in 2006 from Tohoku University, where his PhD
became a Japanese national project and earned him

a tenured faculty position at Tohoku University; Japan. He has led various
interdisciplinary and transdisciplinary research teams which focuses on themes
of current social problems to, create products or services and publishes in
quality venues. Dr. Sami’s research has been presented in media outlets like
BBC Technology, The Register and professional sites like Stack Exchange
blogs.

Othmane Hireche eceived his Engineer and Master
degrees from the University of Science and Tech-
nology Houari Boumediene (USTHB), Algeria, in
2009 and 2011, respectively. He is currently an IT
specialist - Infrastructure at Nanoform, Finland and
working toward the PhD degree at USTHB. Between
2019 and 2022, he has been a Project Engineer at
MOSA!C Lab, Aalto University, Finland. Prior to
that, he was a Research Support Engineer with the
Research Center on Scientific and Technical Infor-
mation (CERIST), Algeria. His research interests

include self-driving networks, programmable data planes, blockchain, and AI-
based zero touch security management.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3318606

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

