
Intelligent Multi-Domain Edge Orchestration for
Highly Distributed Immersive Services: An

Immersive Virtual Touring Use Case
Tarik Zakaria Benmerar∗, Theodoros Theodoropoulos†, Diogo Fevereiro‡, Luis Rosa‡, João Rodrigues§,

Tarik Taleb¶, Paolo Barone‖, Konstantinos Tserpes†, and Luis Cordeiro‡
∗ICTFICIAL Oy, Finland; †Harokopio University of Athens, Greece; ‡OneSource, Portugal; §Cyango, Portugal;

¶University of Oulu, Finland; ‖Hewlett Packard Enterprise, Italy

Emails: tarik.benmerar@ictficial.com, ttheod@hua.gr, duarte.fevereiro@onesource.pt, luis.rosa@onesource.pt,

joao.rodrigues@cyango.com, tarik.taleb@oulu.fi, paolo.barone@hpe.com, tserpes@hua.gr, cordeiro@onesource.pt

Abstract—Edge cloud technologies in tandem with AI-enabled
solutions can contribute to overcoming the challenges that pertain
the distributed execution of immersive services and contribute
towards providing a positive experience for the end-users. Intelli-
gent resource management, orchestration, and prediction systems
can optimize the deployment of services, adapt to changing
demands, and ensure that the services are running smoothly. This
paper introduces a novel architectural paradigm capable of fa-
cilitating multi-domain edge orchestration for highly distributed
immersive services by incorporating a plethora of AI solutions
and technological enablers that can support multi-domain edge
deployments. The proposed architecture is designed to operate on
the basis of multi-level specification blueprints, which decouple
the simple high-level user-intent infrastructure definition from
the AI-driven orchestration and the final execution plan. The
Application Management Framework (AMF) offers a visual
language and tool that can be used as an alternative to a formal
method for creating the intent blueprint. In the frame of this
work, the latter is validated by an immersive virtual touring
use-case scenario.

Index Terms—Edge cloud, immersive service, orchestration,
cluster, Kubernetes, centralized management, and decentralized
management

I. INTRODUCTION

Highly distributed immersive services have the potential

to revolutionize different industries by providing new and

innovative ways of experiencing and interacting with the

world. For instance, Virtual Reality (VR) and Augmented

Reality (AR) can provide students with interactive and en-

gaging learning experiences. Likewise, VR simulations can

help train professionals in various industries, such as health-

care and aviation. In entertainment, immersive services have

transformed the gaming industry by allowing players to fully

immerse themselves in virtual worlds, while AR can enhance

live events by overlaying interactive digital elements on real-

world environments.

Unfortunately, to maintain a high level of Quality of Service

(QoS), immersive services depend on extremely low latency

and high bandwidth services [1]–[4]. Scientific literature sug-

gests that for an end-user to have a satisfactory experience, the

end-to-end latency should not exceed 15ms, and the available

bandwidth should scale up to 30 Gbps [5]–[7]. In addition,

faults in task processing can potentially disrupt service deliv-

ery and compromise the integrity of immersive experiences.

Therefore, it is crucial for applications of this nature to

possess fault tolerance capabilities. Furthermore, immersive

applications are computationally intensive, requiring complex

3D models and high-quality graphics. Incorporating essential

computational resources into end-user equipment would result

in bulky and expensive setups, which goes against the princi-

ples of immersive applications that require end-user devices to

be portable and cost-effective [8]. Cloud computing can shift

the computational burden to remote resources, allowing end-

user devices to remain mobile and affordable. However, cloud

topologies cannot fully cope with the ultra-low latency and

high bandwidth requirements of immersive services, since ar-

bitrary complex networks intervene between end-user devices

and cloud servers.

Edge computing aims to reduce the amount of data trans-

mitted to remote clouds and allows data processing near

the data sources. As a result, edge topologies provide faster

response times, higher transfer rates, and better scalability and

availability. Thus, running immersive services in a distributed

manner across the cloud-edge fabric would benefit application

developers and help maintain high-level QoS provisioning [9].

On the downside, the optimal allocation of distributed tasks

across the network and compute resources of the cloud-

edge continuum remains an open challenge, especially under

the latency, bandwidth and fault tolerance constraints of the

distributed immersive applications. Machine Learning (ML)

/ Deep Learning (DL) can help address these challenges by

providing intelligent resource management and orchestration

systems that can adapt to the changing demands of the end

users. For example, Artifical Intelligence (AI)-powered load

balancing and resource allocation algorithms can optimize the

deployment of services across the cloud-edge fabric, taking

into account factors such as network conditions, computational

resources, and users’ demands. Moreover, AI-powered predic-

tive analytics can be used to anticipate future demand and

proactively allocate resources accordingly, avoiding potential

bottlenecks or service disruptions. AI-powered monitoring and

fault detection systems can also help ensure that the services

are running smoothly and identify any issues before they

affect the end-users’ experiences. On top of the aforemen-

tioned AI solutions, Application Management Frameworks

(AMFs) are an essential tool for deploying applications on

381

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00061

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

dg
e 

C
om

pu
tin

g 
an

d 
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 | 

97
9-

8-
35

03
-0

48
3-

1/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
ED

G
E6

00
47

.2
02

3.
00

06
1

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



edge computing. AMFs provide a structured approach to

designing, documenting, and managing an application and

deploying it on an edge computing system. The importance

of AMFs lies in their ability to provide a common language

and framework for stakeholders to collaborate on the design,

implementation, and management of applications. By using

a standardized approach, AMFs can help ensure consistency,

interoperability, and scalability across the system, while also

enabling stakeholders to make informed decisions about trade-

offs between cost, performance, and other factors. Finally, it

is essential to incorporate the required technological enablers

that are capable of facilitating the orchestration & manage-

ment of highly distributed immersive services. This type of

deployments typically spans across multiple domains. To that

end, it is of paramount importance for these technological

enablers to focus on multi-domain edge orchestration. In this

vein, this paper showcases a novel architectural paradigm

that facilitates intelligent multi-domain edge orchestration for

immersive services.

The remainder of this article is organized in the following

manner: Section II explores some research work relevant

to intelligent multi-domain edge orchestration. Section III

introduces the architecture of the envisioned intelligent multi-

domain edge orchestration system. Section IV describes an

Application Management Framework (AMF) which provides

a visual language and tool alternative to the formal approach

for the intent blueprint, as well as an immersive virtual

touring use-case scenario that is used to validate the proposed

architectural paradigm. Finally, Section V summarizes the

merits of this work.

II. RELATED WORK

Edge computing is geared towards addressing the growing

demands and requirements of the next generation of highly

distributed applications [10]. Each cluster of edge nodes is

responsible for processing data from multiple applications

and is designed to handle the specific processing needs of

these applications, with the aim of reducing latency, improving

data privacy, enabling real-time decision-making, achieving

high scalability and resilience, and allowing better resource

utilization. In [11], 3GPP SA6 proposes an edge computing-

based architecture for enabling Edge Applications (EdgeAPP).

EdgeAPP is built on principles of application portability, ser-

vice differentiation, flexible deployment and interworking with

the 3GPP network. EdgeAPP specification discusses aspects

such as service provisioning, registration, Edge Application

Server (EAS) discovery or Service Continuity (i.e., maintain-

ing a service in case of user mobility or migration).

ZSM (Zero-touch network and Service Management) is an

end-to-end management reference architecture developed by

ETSI to provide a flexible and automated [12] approach to

managing services and infrastructure in a 5G network. It com-

prises six building blocks: Management Services, Management

Functions, Management Domains, E2E Service Management

Domain, Integration Fabric, and Data Services. The ZSM

Management Services provide a standardized and consistent

way to expose different management capabilities across a

multi-domain deployment. Management Functions combine

multiple capabilities to form broader management features.

The Management Services are organized into Management

Domains, where services can either be internal or exposed

outside the domain. The ZSM framework also allows for a

hierarchy of Management Domains, where multiple domains

can be stacked on top of each other. Integration Fabrics

facilitate communication between management functions. The

Domain Integration Fabric connects services within the same

domain, while the Cross-Domain Integration Fabric facilitates

communication over different domains. Both fabrics are used

as a communication bus and to register, discover, and invoke

different supported services. Data Services allow for the de-

coupling and reusing of the same management data across

distinct management services. Ultimately, ZSM can be seen

as a strategy to move from automatic to autonomous (A2A)

orchestration architectures considering mechanisms such as

policy-driven, intent-based, network governance, network sta-

bility, reinforcement learning, and transfer learning [13]. In-

deed, following the advancements in AI methodologies, there

have been numerous attempts [14], [15] at incorporating them

to build further ZSM developments in different aspects, such

as multi-tenancy management, traffic monitoring, and archi-

tecture coordination. In [16]. ETSI details a list of relevant

AI-enabling areas for AI-driven network management, such

as Trustworthy Machine Learning, Decentralized Machine

Learning, AI/ML model validation, Anomaly Management

using AI/ML-based closed loops, ML model cooperation and

federated Learning.

Multi-Domain E2E service lifecycle management can be

split into three categories of processes: onboarding, fulfilment

and assurance [17]. The first two deal with the aspects of

the service bootstrapping (e.g., service onboarding, service

activation, reconfiguration, decommissioning), whereas assur-

ance processes are used to continuously (in a close-loop)

monitor and guarantee processes are running as supposed and

according to the expected Service Level Agreement (SLA)

and QoS [18]. Likewise, Intent-driven architectures provide

manifold benefits, including the promise to help to simplify

the management of complex infrastructures such as 5G multi-

vendor deployment scenarios as described in 3GPP specifica-

tions [19], [20]. Intents focus on what needs to be achieved

regardless of the actual implementation or the underlying

infrastructure details [21]. ETSI created the Experiential Net-

work Intelligence (ENI) framework to enable networks to

leverage the benefits of AI methodologies while ensuring they

meet Quality of Service requirements [22]. The ENI Cognitive

Architecture model involves a set of hierarchical closed control

loops based on the Observe-Orient-Decide-Act model, with

extensions to accommodate collaborative decision-making,

learning, and policy management. These enhancements enable

the system to adapt its behaviour according to changes in

user needs, business goals, and environmental conditions. It

operates in two modes: recommendation and command. The

former functions as an assistant recommending actions, and

382

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



the latter functions as an actual governing other management

components.

There is also now a plethora of emerging tools and enablers

focused on supporting the management of containers, Virtual

Machines (VMs) and services across the edge and cloud

environments. Open Network Automation Platform (ONAP)

[23] is designed to automate the composition and creation

of network services. Akraino Edge Stack [24] is a Linux

Foundation project focused on creating a framework for edge

computing, providing a set of blueprints and reference archi-

tectures that help developers build and deploy edge applica-

tions. ClusterAPI [25] is a Kubernetes project that aims to

provide declarative APIs for cluster creation, management,

and lifecycle management, simplifying the creation and man-

agement process of Kubernetes clusters in multiple cloud

providers, on-premises data centres, and hybrid environments.

Open Source MANO (OSM) [26] is an ETSI project that

aims to provide a platform for deploying, managing, and

monitoring virtual network functions (VNFs) and network

services. Cloudify [27] is a multi-cloud management platform

designed to automate and manage the deployment of complex

applications and services across multiple clouds and data

centres with support for hybrid and multi-cloud environments.

OpenShift [28] is a container application platform built on

top of Kubernetes that provides developers with an integrated

environment for building, deploying, and scaling containerized

applications.

III. INTELLIGENT MULTI-DOMAIN EDGE

ORCHESTRATION

This section discusses the key strands of the proposed

intelligent multi-domain edge orchestration, namely the ref-

erence architecture, the blueprints to express applications and

infrastructure, the service planning and deployment steps, the

role of Native AI and AI-based mechanisms to fulfil the needs

of immersive services, the monitoring and the core metrics

and finally, the concept of inter-cluster peering to facilitate

distributed application deployments.

A. Native AI and Intent-driven Multi-domain Orchestration
Architecture

Edge computing and multi-domain architectures are two

emerging technologies meant to disrupt how immersive ser-

vices are built and delivered. Amongst others, they enable

service deployments closer to users, a more efficient and,

therefore, sustainable edge-cloud continuum utilization, and

last but not least, heterogeneous infrastructure composition

(i.e., no restrictions to a single provider or single cluster

deployments). Nevertheless, there is a gap between immersive

application developers’ intentions and the expertise needed to

maintain and orchestrate a (complex) multi-domain environ-

ment. Apart from the infrastructure, a deep understanding of

cloud-native architectures, tools, mechanisms and protocols is

needed. Managed solutions provide a step towards alleviating

such complexity. Still, they typically fail to deliver an intuitive

way of expressing the developer’s intentions or do not include

Fig. 1. Intelligent Multi-Domain Edge Orchestration architecture.

advanced features such as autonomous service deployment and

lifecycle management, which are increasingly relevant in these

scenarios.

Figure 1 depicts the proposed native AI and intent-driven

multi-domain orchestration architecture conceived to support

the service provisioning and life-cycle management of highly

distributed immersive services across a distributed edge-cloud

infrastructure. Such architecture aims to empower immersive

application developers with tools for (visually) expressing and

composing their applications. Later, the proposed architecture

aims to translate application blueprints into orchestration and

execution blueprints, which are used to ensure the expected

lifecycle of the application’s components.

Such architecture was designed to: i) take into consideration

immersive service expectations and intents; ii) abstract the

virtualized physical infrastructure from applications-specific

deployments; iii) take advantage of multi-domain, multi-

stakeholder environments and exploit the full Edge-Cloud

continuum; iv) incorporate the concept of Native AI orches-

tration capabilities (c.f. Section III-E; v) energy efficiency and

QoE optimization (e.g. by deciding the most suitable location

for allocating resources, on-demand resource provisioning -

including the cluster creation, or by continually monitoring and

reacting to resource patterns) vi) service lifecycle automation

leveraging the concept of Zero-Touch and automated closed

loops.

The proposed architecture is composed of five key substrates

as follows:

• Application Management Framework - a user-friendly

383

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



front-end UI for immersive application developers to

compose their applications. Automatically translates com-

ponent composition and definitions provided by develop-

ers into application intent blueprints in TOSCA format

(c.f. Section III-B). Provides the means to trigger appli-

cation deployments via human interaction or via API (for

deployments triggered by devices).

• AI-Driven Provisioning and Life-cycle Manager -

includes the Native AI mechanisms for intelligently de-

vising applications’ best scheduling plans based on in-

frastructure characteristics (e.g., place services requiring

GPU support on GPU-enabled locations) or based on op-

timization criteria (e.g. user-proximity, energy efficiency,

security constraints). This substrate is also responsible

for continuously predicting resource utilization to support

proactive service and infrastructure management (e.g.

scale-in/-out clusters and components on-demand, antic-

ipate service migration needs).

• Infrastructure and Application Monitoring comprises

the set of monitoring agents responsible for gathering and

exposing application, cluster and infrastructure metrics.

• Orchestrator and Resource Manager - comprises the

building blocks and primitives which allow enforcing

the decisions (i.e., orchestration blueprints) into an ex-

ecution plan (i.e., the execution blueprint). Orchestrator

and Resource Manager allows seamless integration with

different cloud and infrastructure providers by providing

the means to create clusters across numerous domains

transparently to end-users. Such clusters form a co-

hesive edge-cloud computing continuum, providing the

flexibility to leverage multiple locations and select the

most suitable one for each service component, allowing

optimal resource utilisation and enhancing the deployed

services’ overall efficiency.

• Multi-Domain Virtualized Infrastructure is formed by

aggregating available infrastructure providers and a list

of existing clusters and application services.

B. From Application intents to infrastructure blueprints

Our proposed orchestration solution is built around three

types of blueprints: User Intent, Orchestration and Infras-

tructure Blueprints. Together, they define different layers of

details related to the application deployment. This allows the

separation of concerns between what the end-user intends at

a high level from the actual implementation and execution,

including the AI-driven optimized decisions and the low-level

infrastructure deployments and configurations.

1) User Intent Blueprint: At a high level, users describe

their intention regarding the functional architecture of their

applications regardless of the underlying infrastructure. This

description provides opportunities for an intelligent scheduler

to optimise networking and resources while respecting the

initial user intent. Based on an extended version of the industry

standard OASIS TOSCA (Topology and Orchestration Specifi-

cation for Cloud Applications) [29], a blueprint specification is

defined for the application deployment model. The user intent

blueprint includes a high-level view of the application repre-

sented as a composition of modular services (packaged into

containers, Virtual Machines, etc.), defining user application

services images and the connection points and virtual links

between them. In addition, users can specify requirements in

terms of resource needs (e.g., number of cores, RAM, GPU,

storage), number of replicas, and expected Quality of Service

(e.g., bandwidth, latency and jitter). Resource definitions drive

the choices of the decision layer on the most suitable targets

for infrastructure provisioning. On the other hand, QoS re-

quirements define SLAs that the selected infrastructure must

satisfy at runtime. Hence they are drivers for the monitoring

and service lifecycle loops. For the Blueprint definition phase,

users describe their application from the AMF graphical front-

end, which guides them in defining the building blocks, their

interconnections, the requirements and the input parameters

or environment variables that may be required at deployment

time. The AMF then generates the related TOSCA represen-

tation for the application model. For the deployment phase,

the AMF front-end provides two modes: human and machine-

to-machine interaction. Human interaction leverages the GUI

front-end to select an application blueprint and deploy from

it an application instance, with forms for manually entering

input parameters. Machine-to-machine interaction leverages a

REST API to be invoked by a device or a system to trigger

the deployment of a specific blueprint.

2) Orchestration Blueprint: The TOSCA user intent

blueprint defines the application at a higher level. It doesn’t

specify how the infrastructure and the services are created and

which resources are used. The intelligent scheduler harnesses

the TOSCA definition and the live monitoring data during

application runtime to create and update the orchestration

blueprint containing the detailed infrastructure and services

provisioning. The orchestration blueprint structure is specified

using a Kubernetes CRD (Custom Resource Definition) [30]

and submitted to a management cluster. CRDs provide a

way to extend Kubernetes with new kinds of resources. As

detailed further, a CRD leverages an accompanying operator

for the lifecycle management of the new type of resource. The

orchestration blueprint uses a similar structure to the TOSCA

User Intent blueprint but enriches it with the required details

for the Kubernetes cluster provisioning. It specifies the in-

frastructure providers used for Kubernetes cluster provisioning

with additional parameters such as the number of control plane

and worker machines, deployment region to be used, machine

images, etc.

Moreover, the TOSCA user intent blueprint only provides

high-level hints of edge needs for guiding their provisioning.

It does not specify how the edges will be created, how

many will be required and where they need to be provi-

sioned. Contrary, the orchestration blueprint specifies all the

Kubernetes-based edge clusters that will be provisioned with

the required infrastructure parameters as any other Kubernetes

cluster in the orchestration blueprint. It is important to note

that the intelligent scheduler updates the edge definitions in the

blueprint during application runtime using the live monitoring

384

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



data and the performance hints specified in the TOSCA user

intent blueprint. The decision blueprint is divided into three

sections as follows:

• Clusters: defines the Kubernetes clusters to be created. It

specifies the cluster provider parameters and details (i.e.,

number of machines, deployment region, etc.).

• Services: defines the containerized services to be de-

ployed. It specifies in which cluster the service will be

deployed, the container image used, ports exposed, the

number of replicas and other parameters required for

correct execution (e.g. environment variables).

• Links: defines which services expositions across two

clusters using secured virtual links. This allows strong

multi-domain communication security without publicly

exposing services over the internet.

While the blueprint parameters are currently fixed for the

different sections, an extensible blueprint specification should

be considered in the long term to make the orchestration of

different use cases viable.
3) Infrastructure Blueprints: Based on the orchestration

blueprint, the initial application deployment and subsequently

updated deployments are handled by a Kubernetes Operator.

This later is a software extension to execute the orchestration

blueprint corresponding to a Kubernetes Custom Resource

instance. We should note that the Operator pattern and CRDs

(Custom Resource Definitions) are the de facto pillars for

extending Kubernetes functionalities.

Based on clusters section details in the orchestration

blueprint, the operator set up the required third-party clusters

bootstrapping blueprints required for their provisioning on the

specified cloud/infrastructure provider. Currently, ClusterAPI
was chosen as the provider for cluster setup. ClusterAPI

provides manifold benefits, including the ability to instantiate

and manage the lifecycle of Kubernetes on widely used cloud

providers. Services section in the orchestration blueprint is

used by the operator to set up the necessary Kubernetes

deployments resources to the specified cluster. From the links
section in the orchestration blueprint, the operator set up the

VPN links through inter-cluster peering. Liqo, detailed later,

is used as the third-party tool for this operation.

C. Service Deployment Planning

As explained earlier, the operator sets up the required

clusters unto which the application services are planned to

be deployed. Regarding deployment planning, at least two

approaches can be considered: different services and appli-

cations isolated in their own clusters or having them deployed

unto the same cluster for consolidation purposes. In the first

approach, every new service deployment requires tearing up

a new cluster for the application beforehand. This process

requires a certain amount of time which adds to the application

setup time. In the latter approach, the consolidation reduces the

setup time. Nevertheless, it adds a significant amount of logic

complexity and an elaborated security system which must

be in place to guarantee complete isolation between services

from different applications. For the sake of simplicity, the

Fig. 2. Offloading and redundancy in decentralized multi-domain management
clusters.

first approach was chosen, although improvements are planned

to support additional deployment schemes which, although

more complex, can bring manifold benefits, including a more

sustainable infrastructure utilization.

D. Cluster Management Approaches: Decentralized vs Cen-
tralized

It is important to note that an operator needs to run in a

Kubernetes cluster like any other application. The operator is

strategically placed in a dedicated management cluster for the

envisioned multi-domain orchestration solution. Likewise, the

blueprints are deployed inside that cluster as CRDs, allowing

the operator to keep track of changes in the application

blueprints and synchronise their states with the actual infras-

tructures states. Two approaches are possible for deploying

the management cluster, the operator and the application’s

blueprints. These approaches can be centralised or decen-

tralised. In the centralised approach, a single management

cluster hosts the operator and all the application blueprints. A

significant increase in submitting new or updated application

blueprints in this centralised approach can lead to scalability

and resilience issues. In this case, the management cluster

itself can be seen as a Single Point of Failure (SPOF),

and any strategy for having redundancy should occur at the

cluster level (e.g., Kubernetes High-Availability multi-node

cluster setup). Such a centralised approach allows simplified

management of the deployed applications and the orchestration

components. In the decentralised option, on the other hand,

multiple management clusters are deployed, with each having

its own operator and sharing the application blueprints (See

Figure 2. In such a decentralised approach, both application

blueprints offloading and redundancy between clusters are

possible with the declarative nature of the blueprints.

E. AI-driven provisioning and lifecycle management

Highly distributed immersive applications in edge comput-

ing face several latency, bandwidth, reliability, and scalability

challenges. These challenges can impact user experience and

the overall performance of the application. AI solutions can

be used for the lifecycle management of highly distributed im-

mersive applications in edge computing. These solutions can

significantly contribute towards optimizing the performance

and reliability of these services throughout their lifecycle

and ensure efficient resource allocation and management. In

385

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



the context of the proposed architectural paradigm, many AI

solutions may be leveraged to accommodate the complexity

associated with Multi-Domain Edge Orchestration for Highly

Distributed Immersive Services. To achieve this goal, the

authors of this work have identified two types of AI solutions.

This taxonomy is inspired by ENI’s modus operandi, was

briefly explored in the Related Works section, and is based on

the role of the AI in the context of the orchestration process.
The first type is indicative of AI solutions that use the

available information to produce valuable insights that can be

leveraged in the context of the orchestration process in the

form of predictive analytics. This type describes a plethora

of Deep Learning time-series forecasting [31] methodologies

that are capable of performing accurate predictions regarding

numerous critical factors such as network conditions, computa-

tional resources, and user demand. The orchestrator leverages

these predictions. The second type is indicative of AI solutions

designed to operate as orchestrators. To produce the various or-

chestration strategies, they examine a plethora of information,

which includes the aforementioned critical factors. This type

describes various Reinforcement Learning [32] methodologies

that perform that are in charge of functionalities such as task

offloading, load balancing, and resource allocation.
Both types of AI solutions are implemented as parts of

closed-control loops, similar to those described within ZSM

and ENI. As such, they play an integral role in the decision-

making process and can contribute towards tackling the afore-

mentioned challenges in the following ways:

• Latency: In immersive applications, even small delays

can affect the user experience significantly. Edge com-

puting can help reduce latency by processing data closer

to the source. However, the distribution of the applica-

tion across multiple edge nodes can introduce additional

latency. AI can help mitigate this by predicting the

behaviour of the users [33] and the application to antic-

ipate the processing requirements and allocate resources

accordingly [34].

• Bandwidth: Immersive applications require high band-

width for streaming multimedia content. However, the

limited bandwidth in edge networks can cause delays or

interruptions in streaming. AI can optimize the use of

available bandwidth by predicting the content users are

likely to access. That content is then preloaded in the

edge devices to reduce the amount of data that needs to

be transferred [35].

• Reliability: Highly distributed immersive applications in

edge computing can be vulnerable to network and node

failures. AI can help ensure reliability by monitoring the

performance and behaviour of the application in real-

time and detecting any anomalies or failures [36]. AI can

also help to predict when a node is likely to fail [37]

and migrate the application to a different node to ensure

continuity of service [38].

• Scalability: Immersive applications can be resource-

intensive, and as the number of users increases, the

demand for resources also increases. AI can help man-

age the demand for resources by predicting the number

of users, their behaviour, and the subsequent resource

demand [39] to allocate resources more efficiently. AI

can also help optimize the allocation of resources across

multiple edge nodes [40] to ensure that the application

can scale up or down as needed.

Thus, within the frame of the proposed architectural

paradigm, the two types of AI solutions do not operate

independently but are instead envisioned to conduct their

functionalities collaboratively. More specifically, the predic-

tions/ insights produced by the first type of AI solutions can

be leveraged by the orchestrating entities that belong to the

second type. This enables the latter to devise more refined or-

chestration strategies that consider the future state of the multi-

domain edge environment. Furthermore, the incorporation of

the federated learning paradigm into the aforementioned AI-

driven functionalities is intertwined with a plethora of benefits

in terms of privacy-preservation, distribution of AI knowledge

sharing, and enhanced learning efficiency in the context dis-

tributed edge computing.

Federated learning [41] is a ML approach that enables

training models across multiple decentralized / edge devices

while keeping the data on those devices. Instead of sending

data to a central server for training, the models are trained

locally on the edge devices, and only the model updates or

gradients are shared with a central server for aggregation. This

approach preserves data privacy and security, as sensitive data

remains on the devices where it is generated. Edge devices

contribute locally trained models, which are aggregated to

create a global model. This process establishes cross-domain

learning, where knowledge is shared without compromising

privacy. The distributed nature of federated learning facilitates

knowledge transfer from resource-rich to resource-limited de-

vices, benefiting all devices. On top of that, training models

on edge devices reduces latency and allows real-time decision-

making. Federated learning only exchanges model updates

instead of raw data, thus minimizing communication overhead

and conserving bandwidth. Finally, distributing the learning

among edge devices allows for horizontal scalability. As more

edge devices join the federated learning process, the system

can handle larger volumes of data and train more complex

models without relying solely on centralized infrastructure.

F. Infrastructure and Application Monitoring

For the correct operation of the AI-driven provisioning and

lifecycle management component, it must have access to both

historical and live monitoring data. Historical monitoring data

are essential for correct network performance or workload

predictions, particularly inter-cluster latency and bandwidth

and edge devices network latency and application usage in

our immersive experiences use-case. Live monitoring data

act as real-time feedback to the smart scheduling decisions

and determine whether the expected performances have been

achieved or the infrastructure resources can still cope with the

submitted workload.

386

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



Based on the defacto Kubernetes clusters monitoring tool

Prometheus [42], the monitoring component creates a set of

agents that aggregates all the historical and live monitoring

data for the given application. Depending on a specific deploy-

ment layer performance we are interested in, different metrics

agents can be deployed, namely: infrastructure metrics agents,

cluster metrics agents, and application metrics agents.

1) Infrastructure Metrics Agents: All the applications

clusters are deployed unto the existing virtualized regional

cloud infrastructures. The AI-driven provisioning and lifecycle

manager harnesses historical data for the existing cloud re-

gional infrastructures metrics to guide the cluster placement.

Agents are deployed to the regional cloud infrastructures to

gather the required metrics. These agents provide the resource

data, latency, and historical bandwidth data between the cloud

infrastructure regions. The provisioning and lifecycle manager

can then make the required predictions for the placement and

migrations of application services. Note that these agents can

either be based on software deployed by the cloud provider or

as part of a dedicated monitoring cluster independent of any

application deployment.

2) Cluster Metrics Agents: Every cluster in the given

application should be able to handle the required deployed

services workload while achieving the target performances. A

set of cluster metrics agents are deployed unto each cluster

to continuously monitor the hardware resources (e.g., CPU,

Memory) consumed by each node and deployed container, as

well as network performance between clusters (e.g., latency

and bandwidth). The provisioning and service lifecycle man-

agement component will then use these metrics to scale up

or down the cluster nodes depending on the workload or for

migrating services from one cluster to another to achieve better

network latency or bandwidth.

3) Application Metrics Agents: Custom hints can be spec-

ified in the User Intent Blueprint as part of specific network

or application workload performances. These hints are first

aggregated from well-defined sources using a dedicated mon-

itoring system and, later, harnessed by AI-driven provisioning

and lifecycle manager to optimise the intended hint criteria. A

plugin system is put in place to achieve maximum flexibility in

integrating the various application-specific metrics. Amongst

others, this allows the case of communicating edge devices

network performances and geolocalisation hints metrics. Met-

rics agents can also measure a particular application’s Quality

Of Service (QoS), such as a specific job of application queuing

time, helping the user plan for service replication. Better,

automated as part of our potential improvements to our system.

G. Inter-Cluster Peering

Nowadays, an immersive application consists of multiple

micro-service components, which can benefit from being

distributed across different clusters. Immersive application

components highly depend on the capability to communicate

with each other, regardless of whether they sit in the same

or different locations (and clusters). As such, a transversal

connectivity solution capable of enabling connectivity between

clusters is increasingly required. Such a solution facilitates the

deployment of cross-domain applications, enabling dynamic

location-aware scheduling decisions (whether based on de-

veloper requirements or an AI-driven decision) independently

from labour and time-consuming developer configurations.

Several technologies, such as Liqo or Submariner, promise to

address such automated peering cluster connectivity and ser-
vice discovery across Kubernetes clusters [43] [44]. Liqo, both

free and open-source, is the solution adopted in our proposed

architecture. Liqo is designed to enable seamless connectivity

among geographically distributed clusters (e.g., on-premises,

edge or cloud). Liqo relies on peer-to-peer secure (encrypted)

connections between clusters to validate the identity clusters.

Remote clusters are seamlessly abstracted through the concept

of virtual nodes on the local cluster, allowing transparent com-

munication between the peered clusters, regardless of the CNI

plugin installed. Indeed, for bidirectional peerings, a virtual

node is created in each cluster representing the resources the

remote one provides. Moreover, Liqo also brings the notion

of offloading to reflect and execute workloads on top of

those virtual nodes (e.g., namespaces, services and pods). This

allows exposing services or even the execution of workloads in

remote clusters. For instance, when a namespace is offloaded,

Liqo extends that namespace by creating a twin namespace in

the remote cluster, enabling the pods and services to run on

that cross-cluster shared namespace. Figure 3 compares pod

offloading versus service offloading. Both modes start with the

peering of clusters (i.e., creating a dynamic VPN tunnel) and

the creation of a shared namespace.

Fig. 3. Pod and Service Offloading comparison.

Nevertheless, the pod offloading strategy includes moving

the actual execution of pods and the services to a peered

cluster(e.g., in Figure 3, the application components are first

deployed on the original Green Cluster and later executed in

the Rose cluster). For instance, high-demanding computing

tasks, such as video processing or handling requests during

peak traffic periods, can be easily moved to a (more suitable)

cloud cluster. By offloading some of the application workloads

to a cloud cluster, one can optimize the use of resources across

the edge-cloud continuum, reducing costs and improving over-

387

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



all efficiency. Contrary, service offloading consists of exposing

only the Kubernetes services on a remote cluster. In that case,

the pod execution remains in the original cluster, and the pod

deployment should be performed from the beginning in the

targeted cluster. The remaining components should also be

aware of the names of the services on the remote cluster.

IV. IMMERSIVE SERVICE USE CASE

A. Immersive Virtual Touring

One use case that can benefit from this architectural

paradigm is Cyango Cloud Studio, a VR SaaS (Software

as a service) that allows anyone to create Virtual Reality

experiences. Cyango empowers businesses with a solution

to allow them to explain, show, teach and sell directly in

real-time with interactive 360º video experiences. Cyango

Cloud Studio targets content creators and marketing agencies

requiring a seamless workflow for creating enhanced Virtual

Reality experiences. Cyango Cloud Studio focus on delivering

high-quality VR editing capabilities to content creators and

high-quality 360 VR content to end-users. This content can

be video, image, audio or 3D models.

Besides many features, Cyango allows four distinct use

cases:

• Real-time video streaming: where the users can stream

video and audio to many viewers using any recording

device (e.g., a 360º camera).

• Asset converting: where users upload different kinds of

assets and convert it to multiple quality levels that can be

later adaptively loaded.

• Video editing: allows users to perform remote video

editing without requiring a powerful ad-hoc machine.

• Static video consuming: where users can load and vi-

sualize the immersive experience with 360º videos using

HLS protocol that adapts to different network speeds and

devices.

The Cyango Cloud Studio provides a graphical interface

for users to upload and edit their assets and build the virtual

experience as seen in Figure 4.

Fig. 4. Screenshot of Cyango Cloud Studio Web Interface.

The user can access such an interface in the browser where

all the actions like video converting and editing are made.

This makes it necessary to have a very low latency response

in video editing. For instance, user edits on the browser must

be reflected in (near) real-time in a way it feels like a fast

response to the edit action. Moreover, Cyango Cloud Studio

deployments should consider the ability to scale and adapt

the content delivery accordingly to the number of concurrent

users and guarantee the best QoS and QoE. From a developer

perspective, there is also a need for quickly pushing new code

to a versioned source code repository and seamless integra-

tion with CI/CD pipelines. Cyango Cloud Studio is based

on WebXR, WebGL technologies and uses a micro-service

architecture comprising several containerised components (cf.,

Figure 5).

Fig. 5. Cyango Cloud Studio Components Architecture.

The users (i.e., content creators and VR experience con-

sumers) interact with cyango-story and cyango-cloud-editor

components which should be strategically placed in edge loca-

tions to minimize the latency of video editing and consuming.

The cyango-media-server component also requires a strategic

location for serving and performing real-time video/audio

transcoding and livestreaming. The service placement of the

three should maximize the QoE of different users at different

locations. Components cyango-story and cyango-cloud-editor

use Three.js, a WebGL library abstraction for Javascript. This

library allows video and image as textures in a 3D environ-

ment while allowing interactivity. It provides an immersive

3D experience that can be loaded on smartphones, desktops

and VR headsets. An orchestration platform should support

choosing the most suitable locations of these components

considering the specific hardware capabilities to improve the

overall processing performance (e.g., GPU-enabled nodes).

The cyango-backend component works as an API component

that communicates and delegates processing tasks to cyango-

workers. The cyango-worker(s) can be considered the most

resource-expensive components as they handle all the heavy

tasks like converting the video and audio from any file

extension to a standard HLS protocol playlist that can be

consumed using an adaptive bitrate method. This component

388

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



uses ffmpeg native libraries to convert audio, video, and

other kinds of assets (e.g., images using the sharp library to

manipulate the image and convert it to standard extensions

that are readable as WebGL textures). Replicas of cyango-

worker(s) must be replicated using a Horizontal Auto Scaling

strategy. The cyango-messaging component acts as a messag-

ing bus between cyango-backend and cyango-worker(s) for

an asynchronous task-based processing schema. Finally, the

cyango-database component stores all the stories, assets and

details. The storage component stores the processed files which

users will later consume. These two storage components can

also greatly benefit from an intelligent scheduling placement

approach minimizing the network latencies when accessing

and persisting the assets.

B. Application Management Framework

Application Management Framework (AMF) offers immer-

sive application developers an environment for defining and

deploying highly interactive and collaborative next-generation

services. AMF can be considered an entry point for immersive

application developers, from which they define the modules

of their applications and visually shape and compose them

by specifying properties, parameters and relationships. The

modules are software artefacts packaged into container or vir-

tual machine images. The AMF provides a dedicated registry

where immersive application developers upload their artefacts.

Then, as the first step of application provisioning, AMF

triggers a DevSecOps chain to check the uploaded images

against security threats. A detailed report is generated, and

pointers to descriptions about each security issue and possible

resolutions are shown to the users. Once the needed images

are loaded into the AMF registry, the developers can define the

application blueprints for their services visually in the AMF.

The user interface guides the developers in the steps required

to define the application components. Figure 6 shows how the

AMF Blueprint Editor is used to model the Cyango application

described in the previous section. Developers start by defining

the application name, description, version number and privacy

level. Also, in this phase, it is possible to define global input

parameters required at deployment time when launching an

application from a blueprint.

The second step is the definition of external devices or

systems that are indeed not directly managed by the orches-

tration platform but are required by the application. Therefore,

they must be represented in the model to understand how

to communicate with them. An example of this category is

an end-user mobile device which connects to the deployed

application or a cloud service (e.g., Amazon S3) used by the

application to gather some data. The next step is the definition

of the set of modules (called Virtual Network Functions in

the AMF) constituting the application, together with details

on resource requirements in terms of cores, RAM, GPU,

storage, the support for replicas, the input and environment

parameters, and the connection points to communicate with

other components. Connection points specify the port numbers

and protocols for outgoing or incoming communication flow.

Fig. 6. AMF Blueprint Editor: sample of the definition of the Cyango Cloud
Studio application module (VNF).

The orchestrator later uses them to create the corresponding

services and required connections between clusters. This is

done for every module composing the application.

The final step is the definition of the virtual links (Figure 7),

the communication channels allowing modules to interact via

their connection points. A dedicated form allows the user to

select the available connection points defined on the VNFs in

the previous steps and to select from a checkbox the ones that

must be connected, hence defining the communication path

between the modules. For every virtual link defined, users can

set requirements for QoS related to bandwidth, latency and

jitter. This can be done by filling values in a form or interacting

with a slider.

Fig. 7. AMF Blueprint Editor: sample of the definition of communication
links and QoS properties.

Every time the users define a new item, a graphical rep-

resentation is updated on the top side of the GUI so that

the developers can have visual feedback on what they are

modelling. The final representation of the Cyango Cloud

Studio model is shown in Figure 8.

Upon completion of the blueprint, the AMF generates a

389

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. AMF Blueprint Editor: model of Cyango Cloud Studio application.

TOSCA representation that can be used at deployment time,

together with input parameters, for a deployment request to

the lower orchestration layers.

Fig. 9. AMF Blueprint Editor: excerpt of the TOSCA model generated for
the Cyango use case.

C. Architectural Evaluation

Existing standards and solutions like ETSI MANO and ZSM

provide outstanding network-centric reference architectures

to structure multi-domain Edge Orchestration. Nevertheless,

such specifications remain highly complex to implement and

lack high-level components to provide pervasive, scalable

orchestration as a service to end users. In the same way, Plat-

forms as a Service provide a scalable simpler programmable

interface to an underlying complex infrastructure compared to

Infrastructure as a Service.

Our architecture proposes the concept of user intent

blueprints as an application-centric programmable interface

towards a full-featured multi-domain intelligent orchestration

as a Service. The blueprint provides a declarative design at

a very high level of the multi-domain infrastructure. Further

care has been put into providing the visual specification

tool AMF on top of the blueprint. The TOSCA user intent

blueprint and AMF have been validated with use-case owners

for completeness and usability. The AI alleviates a lot of

the complexity of multi-domain orchestration through a smart

fine-tuning of the application infrastructure details. Existing

reviewed solutions don’t define a detailed set of infrastructure

decisions and the corresponding required monitoring data. Our

orchestration blueprint provides another level of declarative

infrastructure design but with the more fine-grained tuning of

the infrastructure details by an AI component. It is important

to note that an AI can be plugged in without any prior API

adaptation compared to existing solutions, guaranteed that the

specification models are compatible (Graph-based, for exam-

ple). Furthermore, we have identified monitoring data required

for the intelligent conversion between the user intent and

orchestration blueprints. Existing multi-domain orchestration

architectures and tools specify a set of API endpoints and

layered communication channels to set up and update the

application infrastructure. Nevertheless, by not being based

on an actual application infrastructure state specification, the

execution plan is manually defined and ensured by the end

user or a third-party automation tool. Any observed failure

requires another level of management not covered in the ref-

erence architecture. Our Orchestration and Resource Manager

provides a decoupling between the intelligent infrastructure

orchestration decision and the infrastructure execution plan

required during the application’s initial setup and its update

during its lifetime. The operator nature of this component

ensures that the proper application infrastructure state is en-

sured by following an execution plan that respects the agreed-

upon Orchestration Blueprint. Moreover, any notable failure

that deviates the infrastructure from the target state triggers a

remediation plan by the component.

V. CONCLUSION

This article presented a new design approach that can enable

efficient management of immersive services across multiple

domains at the edge, using a range of AI solutions and tech-

nology enables to support multi-domain edge deployments.

Our new architecture proposes a new paradigm based around a

set of multi-level specification blueprints which decouples the

simple high-level user-intent infrastructure definition from the

AI-driven orchestration and the final execution plan. The inno-

vative ClusterAPI and Liqo have been harnessed as the main

pillars for the execution plan operations. The AMF provides a

visual language and tool alternative to the formal approach for

the intent blueprint. This later has been validated by the Im-

mersive virtual touring use case owner. Our Orchestration and

Resource Manager component follows the operator pattern,

which allows the decoupling of the application infrastructure

state from the corresponding execution plan for the initial

setup and remediation plan during a failure.

390

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENT

This research work has been supported by the CHARITY

project that received funding from the EU’s Horizon 2020

program under Grant agreement No 101016509. This paper

reflects only the authors’ view and the Commission is not

responsible for any use that may be made of the information

it contains.

REFERENCES

[1] A. Makris, A. Boudi, M. Coppola, L. Cordeiro, M. Corsini, P. Dazzi,
F. D. Andilla, Y. G. Rozas, M. Kamarianakis, M. Pateraki, et al., “Cloud
for holography and augmented reality,” in 2021 IEEE 10th International
Conference on Cloud Networking (CloudNet), pp. 118–126, IEEE, 2021.

[2] T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely interactive
and low-latency services in 5g and beyond mobile systems,” IEEE
Communications Standards Magazine, vol. 5, no. 2, pp. 114–119, 2021.

[3] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa, “Immersive
services over 5g and beyond mobile systems,” IEEE Network, vol. 35,
no. 6, pp. 299–306, 2021.

[4] H. Yu, T. Taleb, K. Samdanis, and J. Song, “Towards supporting
holographic services over deterministic 6g integrated terrestrial & non-
terrestrial networks,” IEEE Network, 2023.

[5] K. Boos, D. Chu, and E. Cuervo, “Demo: Flashback: Immersive virtual
reality on mobile devices via rendering memoization,” in Proceedings of
the 14th Annual International Conference on Mobile Systems, Applica-
tions, and Services Companion, MobiSys ’16 Companion, (New York,
NY, USA), p. 94, Association for Computing Machinery, 2016.

[6] O. El Marai, T. Taleb, and J. Song, “Ar-based remote command and
control service: Self-driving vehicles use case,” IEEE Network, 2022.

[7] T. Taleb, N. Sehad, Z. Nadir, and J. Song, “Vr-based immersive service
management in b5g mobile systems: A uav command and control use
case,” IEEE Internet of Things Journal, 2022.

[8] T. Theodoropoulos, A. Makris, A. Boudi, T. Taleb, U. Herzog, L. Rosa,
L. Cordeiro, K. Tserpes, E. Spatafora, A. Romussi, et al., “Cloud-based
xr services: A survey on relevant challenges and enabling technologies,”
Journal of Networking and Network Applications, vol. 2, no. 1, pp. 1–22,
2022.

[9] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes,
P. Dazzi, A. I. Protopsaltis, and R. Li, “Toward supporting xr services:
Architecture and enablers,” IEEE Internet of Things Journal, vol. 10,
no. 4, pp. 3567–3586, 2022.

[10] F. Faticanti, M. Savi, F. De Pellegrini, and D. Siracusa, “Locality-
aware deployment of application microservices for multi-domain fog
computing,” Computer Communications, vol. 203, pp. 180–191, 2023.

[11] TS 23.558, “Architecture for enabling edge applications,” Mar. 2023.
[12] ETSI GS ZSM 011, “Zero-touch network and service management

(zsm); intent-driven autonomous networks; generic aspects,” Feb. 2023.
[13] M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R. Maddikunta,

T. R. Gadekallu, and G. Yenduri, “A survey on zero touch network and
service (zsm) management for 5g and beyond networks,” Journal of
Network and Computer Applications, p. 103362, 2022.

[14] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F. Skarmeta,
“Machine learning-based zero-touch network and service management:
A survey,” Digital Communications and Networks, vol. 8, no. 2, pp. 105–
123, 2022.

[15] C. Benzaid and T. Taleb, “Ai-driven zero touch network and service
management in 5g and beyond: Challenges and research directions,”
IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.

[16] ETSI GS ZSM 012, “Zero-touch network and service management
(zsm); enablers for artificial intelligence-based network and service
automation,” Dec. 2022.

[17] ETSI GS ZSM 008, “Zero-touch network and service management
(zsm); cross-domain e2e service lifecycle management,” July 2022.

[18] I. Korontanis, K. Tserpes, M. Pateraki, L. Blasi, J. Violos, F. Diego,
E. Marin, N. Kourtellis, M. Coppola, E. Carlini, et al., “Inter-operability
and orchestration in heterogeneous cloud/edge resources: The accordion
vision,” in Proceedings of the 1st Workshop on Flexible Resource and
Application Management on the Edge, pp. 9–14, 2020.

[19] TR 28.312, “Management and orchestration; intent driven management
services for mobile networks,” Apr. 2023.

[20] TR 28.912, “Study on enhanced intent driven management services for
mobile networks,” Mar. 2023.

[21] TR 28.812, “Telecommunication management; study on scenarios for
intent driven management services for mobile networks,” Mar. 2020.

[22] D. M. Gutierrez-Estevez, M. Gramaglia, A. D. Domenico, G. Dandachi,
S. Khatibi, D. Tsolkas, I. Balan, A. Garcia-Saavedra, U. Elzur, and
Y. Wang, “Artificial intelligence for elastic management and orches-
tration of 5g networks,” IEEE Wireless Communications, vol. 26, no. 5,
pp. 134–141, 2019.

[23] Linux Foundation, “Onap - open network automation platform.”
https://www.onap.org/. (accessed: 02.05.2023).

[24] Linux Foundation, “Akraino.” https://www.lfedge.org/projects/akraino/.
(accessed: 02.05.2023).

[25] Cluster API, “Kubernetes cluster api.” https://cluster-api.sigs.k8s.io/.
(accessed: 02.05.2023).

[26] ETSI, “Osm - open source mano.” https://osm.etsi.org/. (accessed:
02.05.2023).

[27] Cloudify, “Bridging the gap between applications and cloud environ-
ments.” https://cloudify.co/. (accessed: 02.05.2023).

[28] Redhat, “Redhat - openshift.” https://www.redhat.com/en/technologies/cloud-

computing/openshift. (accessed: 02.05.2023).
[29] D. A. Tamburri, W.-J. Van den Heuvel, C. Lauwers, P. Lipton, D. Palma,

and M. Rutkowski, “Tosca-based intent modelling: goal-modelling for
infrastructure-as-code,” Sics software-Intensive cyber-Physical systems,
vol. 34, pp. 163–172, 2019.

[30] O. Yilmaz, “Extending the kubernetes api,” in Extending Kubernetes:
Elevate Kubernetes with Extension Patterns, Operators, and Plugins,
pp. 99–141, Springer, 2021.

[31] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A, vol. 379,
no. 2194, p. 20200209, 2021.

[32] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[33] T. Theodoropoulos, A.-C. Maroudis, J. Violos, and K. Tserpes, “An
encoder-decoder deep learning approach for multistep service traffic
prediction,” in 2021 IEEE Seventh International Conference on Big
Data Computing Service and Applications (BigDataService), pp. 33–40,
IEEE, 2021.

[34] J. Violos, S. Tsanakas, T. Theodoropoulos, A. Leivadeas, K. Tserpes,
and T. Varvarigou, “Intelligent horizontal autoscaling in edge computing
using a double tower neural network,” Computer Networks, vol. 217,
p. 109339, 2022.

[35] Y. Zhang, Y. Li, R. Wang, J. Lu, X. Ma, and M. Qiu, “Psac: Proactive
sequence-aware content caching via deep learning at the network edge,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 2145–2154, 2020.

[36] T. Theodoropoulos, A. Makris, J. Violos, and K. Tserpes, “An automated
pipeline for advanced fault tolerance in edge computing infrastructures,”
in Proceedings of the 2nd Workshop on Flexible Resource and Applica-
tion Management on the Edge, pp. 19–24, 2022.

[37] T. Theodoropoulos, J. Violos, S. Tsanakas, A. Leivadeas, K. Tserpes, and
T. Varvarigou, “Intelligent proactive fault tolerance at the edge through
resource usage prediction,” arXiv preprint arXiv:2302.05336, 2023.

[38] W. Chen, Y. Chen, J. Wu, and Z. Tang, “A multi-user service migration
scheme based on deep reinforcement learning and sdn in mobile edge
computing,” Physical Communication, vol. 47, p. 101397, 2021.

[39] T. Theodoropoulos, A. Makris, I. Kontopoulos, J. Violos, P. Tarkowski,
Z. Ledwoń, P. Dazzi, and K. Tserpes, “Graph neural networks for
representing multivariate resource usage: A multiplayer mobile gaming
case-study,” International Journal of Information Management Data
Insights, vol. 3, no. 1, p. 100158, 2023.

[40] C. Fang, T. Zhang, J. Huang, H. Xu, Z. Hu, Y. Yang, Z. Wang,
Z. Zhou, and X. Luo, “A drl-driven intelligent optimization strategy
for resource allocation in cloud-edge-end cooperation environments,”
Symmetry, vol. 14, no. 10, p. 2120, 2022.

[41] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149,
p. 106854, 2020.

[42] Cloud Native Computing Foundation, “Prometheus.”
https://prometheus.io. (accessed: 02.05.2023).

[43] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini,
“Computing without borders: The way towards liquid computing,” pp. 1–
17, 2022.

391

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 



[44] L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma, “Multi-cloud
connectivity for kubernetes in 5g networks,” IEEE Communications
Magazine, vol. 59, no. 10, pp. 42–47, 2021.

392

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on February 21,2024 at 11:31:07 UTC from IEEE Xplore.  Restrictions apply. 


