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Abstract 

In this article we review the current serverless architectures, abstract and categorize their founding principles, and 
provide an in-depth security analysis. In particular, we: show the security shortcomings of the analyzed serverless 
architectural paradigms; point to possible countermeasures; and, highlight several research directions for practition-
ers, Industry, and Academia.
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Introduction
Virtualization technologies have played a crucial role for 
the wide adoption and success of cloud computing  [1]. 
They allowed cloud providers to simultaneously share 
their resources with many users by placing their mono-
lithic applications inside virtual machines (VMs), offering 
strong isolation guarantees while providing users with an 
(apparently) infinite amount of resources, readily avail-
able when their applications needed them. The cited fea-
tures, together with a pay-per-use business model that 
has contributed to lower the total cost of ownership for 
cloud users, have made cloud computing the most suc-
cessful computing paradigm of the last decade. However, 
this success also came with some drawbacks, the major 
one being the need for the users to directly manage the 
VMs [2].

In response to the above issue, we have witnessed the 
emergence of new programming models that drasti-
cally changed the way software developers develop and 
manage applications for the cloud. One such program-
ming model relies on decomposing an application into 
multiple, autonomous, limited scope and loosely cou-
pled components—also known as microservices—that 
can communicate with each other via standard APIs. 
Unfortunately, due to their long startup time and high 
resource usage, VMs were proven to be inefficient for 

running microservices. This led to the proposal of sev-
eral container technologies (e.g., Docker) as a lighter 
alternative. Containers offer increased portability, lower 
start up time, and greater resource utilization than VMs, 
simplifying the development and management of large-
scale applications in the cloud. These advantages have 
led cloud providers to adopt container technologies and 
to use them in combination with orchestration platforms 
(e.g., Kubernetes or Docker Swarm) to fully automate 
the deployment, scaling, and management of microser-
vice-based applications in the cloud. However, similarly 
to when VMs are used, the microservices paradigm still 
requires users to configure and manage the underlying 
containers (e.g., related libraries and software depend-
encies), and relies on a static billing model where users 
pay a fixed amount for the allocated resources and not for 
the resources actually consumed. The cited points render 
microservices unsuitable for certain types of applications.

Serverless computing is emerging as a new comput-
ing paradigm for the deployment of applications in the 
cloud1. It has two important advantages over its prede-
cessors. Firstly, it allows software developers to outsource 
all infrastructure management and operational tasks to 
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cloud providers, which makes it possible for them to focus 
only on the business logic of their applications [3, 4]. Sec-
ondly, it follows a pure pay-per-use model, where users are 
only charged based on the resources they consume. Cur-
rently, serverless computing comes in two different fla-
vors, known as backend as a service (BaaS) and function 
as a service (FaaS). The core idea behind BaaS is to provide 
software developers a set of services and tools (e.g., data-
bases, APIs, file storage or push notifications) to ease and 
speed up the development of mobile and web applications. 
As per FaaS, it focuses on allowing software developers to 
deploy and execute their own functions on the cloud (note 
that the functions can also utilize additional services as 
those offered in BaaS). To date, FaaS is considered as the 
most dominant serverless model. In the rest of this article, 
we will use the term “serverless” to refer to FaaS.

Due to its simplicity and economical advantages, server-
less computing is gaining significant attention in the indus-
try as a compelling paradigm to deploy applications and 
services in the cloud. Cloud providers, such as Amazon [5], 
Microsoft [6], Google [7], IBM [8] or Alibaba [9] are already 
offering serverless computing services to their custom-
ers. Similarly, many enterprises, such as Netflix, T-Mobile 
and Realtor, are already reaping the benefits of server-
less computing  [10]. According to recent market surveys, 
the serverless computing market is expected to grow at a 
CAGR of 26% during the period 2020-2029 [11]. However, 
with the increase in volume and diversity of attacks against 
the cloud, it becomes apparent that security and privacy 
will be a key factor which, if not addressed, could hamper 
the widespread adoption of serverless computing.

In particular, as per serverless security, at first glance one 
could argue that serverless computing is intrinsically more 
secure than its predecessors because of its characteristics 
(e.g., the short duration of functions), or due to the fact 
that it could inherit security features already developed 
for other virtualization solutions. Yet, as we will show in 
the following, serverless brings many new, idiosyncratic 
security challenges that open the door for new types of 
security attacks. Further, implementing serverless appli-
cations requires a major change in mindset from software 
developers [12], not only in the way applications are writ-
ten but also in the way they are protected from security 
attacks  [13]. These latter requirements are rarely met, 
hence introducing new vulnerabilities.
Contribution. This work is, to the best of our knowl-

edge, the first structured and principled attempt to shed 
light on the security of serverless computing. In particu-
lar, in this paper, we first review and categorize state of the 
art serverless solutions; later, we analyze pros and cons of 
the introduced architectural categories; further, we assess, 
from a security perspective, the fundamental principles 
of the main revised architectural choices. Finally, starting 

from the highlighted weaknesses, we sketch a few solu-
tions and provide several research directions, appealing to 
practitioners, Industry, and Academia, to further enhance 
the security of the serverless ecosystem as a whole.
Roadmap. The sequel of this paper is structured as fol-

lows: In Section  2 we provide the necessary background 
for the reader to understand the main motivation behind 
serverless computing, its advantages, the components any 
serverless platform is composed of and the security mecha-
nisms that are commonly employed to thwart attacks. Sec-
tion 3 defines the threat model. Section 4 discusses some 
inherent properties of serverless that are beneficial secu-
rity-wise while in Section 5 we cover aspects of serverless 
that could negatively affect security. In Section 6 we devise 
a list of possible application-level and infrastructure-level 
attacks which we believe deserve further attention. This is 
followed by possible countermeasures to alleviate them. 
Finally, Section 7 provides concluding remarks.

Background
In this section, we revise the current serverless ecosys-
tem. More concretely, we first briefly introduce server-
less computing, then analyze the five main elements any 
serverless platform is composed of, and finally discuss 
the currently available security solutions.

Serverless computing
In serverless computing, the application logic is divided 
into a set of small, short-lived and stateless functions, each 
one running within a separate execution environment (e.g., 
a container), that communicate with each other and with 
various cloud services (e.g., storage services) to carry out 
their tasks. By using stateless functions, serverless comput-
ing decouples storage from computation, making it pos-
sible to provision, manage, and price these two elements 
separately. Furthermore, in this context the cloud pro-
vider is now responsible for automatically and transpar-
ently spawning and managing function instances in worker 
nodes as well as performing all operational tasks (e.g., 
server and OS maintenance, patching, logging, load balanc-
ing or auto-scaling). Finally, serverless computing also sig-
nificantly reduces application deployment cost via a pure 
pay-per-use model where users are only billed based on the 
resources (e.g., CPU, network or memory) they consume.

Besides the clear advantages serverless offers to software 
developers (in terms of flexibility, scalability, performance 
and costs), it is worth noting that cloud providers can ben-
efit from using it too. As functions are invoked only occa-
sionally and are executed for a very short period of time, 
cloud providers can achieve a higher degree of co-location 
in their servers and further optimize the usage of their 
resources. These two latter points, when carefully planned 
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and orchestrated, can result in an even more profitable 
model for cloud providers.

Serverless ecosystem
As shown in Figure 1, a serverless platform is comprised 
of (at least) five elements: i. functions; ii. API gateways; 
iii. (shared) cloud services; iv. security tools; and, v. con-
trol plane.

 1) Functions. Functions are the core component of 
serverless platforms. They can be written in many different 
programming languages (e.g., JavaScript, Python, and Go). 
Software developers can either write them by themselves, 
rely on open-source third-party functions (e.g.,  [14]), or 
use proprietary functions for which they must pay licens-
ing fees. Functions are typically run inside a newly-gen-
erated, isolated execution environment (e.g., a container) 
within a worker node. The cited functions are executed in 
response to external and/or internal events specified by 
application owners (e.g., HTTP requests, modification to 
objects in storage, table updates, or function transitions). It 
is worth noting that not all defined functions must neces-
sarily communicate directly with the outside world (it may 
be the case that there are functions that can only commu-
nicate with other functions and cloud services and that are 
not directly accessible from the outside).

 2) Cloud services. Current serverless platforms inte-
grate a wide range of cloud services used to extend the 
functions’ capabilities, e.g., to collect various types of 
data (e.g., using Amazon Kinesis), to quickly react to 
events (e.g., using Google cloud pub/sub message bus 
system or API Gateways), to manage the entire applica-
tion lifecycle and enable DevOps capabilities (e.g., using 
Microsoft Azure DevOps) or to achieve long- and short-
term storage (e.g., using Amazon S3 and DynamoDB).

 3) Security tools. Cloud providers make available to soft-
ware developers a set of tools and services to ease workflows 
security management. Some of these tools and services are 
also used in the context of microservices; however, the task 
of configuring them correctly becomes much more chal-
lenging in serverless. For example, the Identity and Access 
Management (IAM) service, which allows the configuration 
of fine-grained access controls to authenticate and restrict 
the resources functions have access to. Another widely used 
security service is the so called Virtual Private Cloud (VPC), 
which allows the creation of private, isolated networks for 
secure communications between applications that belong 
to the same organization. In addition to the cited services, 
we believe that other services and tools, such as those used 
for Runtime Application Self-Protection (RASP), Infrastruc-
ture as Code (IaC) scanning, and source code composition 

Fig. 1 Serverless platform



Page 4 of 12Marin et al. Journal of Cloud Computing           (2022) 11:69 

analysis, can play an important role in protecting serverless 
applications and serverless platforms against attacks.

 4) Control plane functionalities. Serverless platforms 
typically comprise multiple control plane functionali-
ties for cloud providers to operate, manage, and monitor 
their infrastructures. For example, there is an orches-
trator component that handles the process of assigning 
functions to worker nodes. Similarly, a monitoring com-
ponent is used to periodically check the status of worker 
nodes, the software they execute, as well as the execution 
environments that run on them. To this end, the moni-
toring component gathers metering data, logs, and a few 
metrics emitted by the worker nodes. This way, if a failure 
is detected, the affected functions can be quickly instan-
tiated in other worker nodes. While the functionali-
ties can vary slightly across several serverless platforms, 
all of them have in common the fact that the data plane 
needs to receive periodic configuration updates from the 
control plane, and the control plane needs to frequently 
receive (or collect) operational state from the data plane. 
Thus, it is fundamental for the control plane to stay in 
sync with the data plane.

Existing infrastructure‑level security controls
Today’s serverless platforms typically run functions inside 
containers (or similar execution environments) that are 
protected by various open-source security mechanisms 
and services (some of which are built into the Linux ker-
nel) in combination with security mechanisms developed 
by the cloud providers themselves. In the following, we 
focus solely on open-source, widely used security mecha-
nisms (as the mechanisms developed by cloud providers 
are typically adhoc, and are often not public or well doc-
umented). Note that these security mechanisms play an 
important role in the security of execution environments 
used in today’s production environments like g-Visor and 
Firecracker; g-Visor is essentially an additional security 
layer that is developed atop the Linux security mecha-
nisms, whereas the Firecracker sandboxes (run in user 
space) are also restricted by Linux security mechanisms 
like seccomp, cgroup, and namespaces.

These security mechanisms can be clustered into the 
following four categories: (i) host hardening; (ii) isola-
tion of processes; (iii) network security; and, (iv) access 
control. For an overview of security mechanisms in 
the first three categories, we refer the reader to [15] (as 
these mechanisms are generally applicable to containers 
regardless of what is executed inside them). As for access 
control, cloud providers typically offer several mecha-
nisms built-in in the API gateway to throttle, cache, 
authenticate, and authorize external API calls before 
passing the requests to the corresponding functions, 
e.g., relying on external identity providers or specifying a 

range of IP addresses from which legitimate requests can 
originate.

Security of current mechanisms. Over the last few years, 
researchers have investigated in depth the real security 
guarantees provided by the existing mechanisms used to 
protect container-based infrastructures. This resulted in 
the identification of serious weaknesses in the security 
mechanisms used for process isolation [16] and network 
security [17]. In addition, previous work pointed out that 
host hardening mechanisms, such as seccomp, AppAr-
mor and SELinux, require cloud operators to manually 
configure them, which is a laborious task that is prone to 
errors.

Threat Model
Serverless platforms are complex and dynamic ecosys-
tems with many distinct components. To design a secure 
serverless ecosystem, one must consider the security pro-
vided by each of its components and their interplay. Fur-
ther, to properly frame the serverless security ecosystem, 
as it will be done in the sequel, we first need to define 
the corresponding threat model. To this aim, we mainly 
distinguish between two types of adversaries: i. external; 
and, ii. internal, discussed in the following.

External adversaries typically carry out their attacks 
from outside the cloud by leveraging user-controlled 
input fields in any of the existing APIs that are offered 
to handle events. The same is true for serverless plat-
forms. These attacks can enable adversaries to run arbi-
trary commands inside the function in order to retrieve 
sensitive data (e.g., session tokens stored in environment 
tables) or tamper with the execution of any function (or 
cloud service that receives maliciously-crafted input data 
and does not apply proper input data sanitation tech-
niques). While some injection attacks are well-known 
because they are applicable to standard web applications 
(e.g., those ones that exploit cross-site scripting or the 
ones based on code/command injection), serverless func-
tions can instead be triggered from many different event 
sources—this latter feature broadening significantly their 
attack surface [18, 19].

Internal adversaries refer to adversaries who have full 
control of one (or more) functions and conduct attacks 
from inside the cloud. In the case of public clouds, it is 
relatively easy for such adversaries to deploy malicious 
functions in order to attempt to perform attacks from 
the inside. These adversaries can attempt to: i. create 
covert channels  [20, 21]; ii. conduct privilege escalation 
attacks (e.g., to compromise other co-resident functions 
or worker nodes)  [22]; iii. retrieve or tamper with sen-
sitive data (e.g., data in storage services)  [23]; iv. gather 
knowledge about runtime environments and infrastruc-
ture [21]; or, v. conduct various types of Denial-of-Service 
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(DoS) attacks  [24] (including so called Denial-of-Wallet 
attacks) [21, 25, 26]. In a separate line of work, research-
ers have also shown that if registry services exist where 
serverless functions developed by other software devel-
opers can be found, adversaries with access to the reg-
istry can carry out so called typosquatting attacks  [27]. 
The goal of such attacks is to distribute malicious con-
tainer images by exploiting the potential typos made by 
container users. Similarly, there exist attacks whereby 
the goal of adversaries is to influence the scheduler to 
co-locate the attacker’s application with a targeted vic-
tim applications  [28, 29]. It is worth mentioning that 
co-location is an important prerequisite to perform 
certain attacks like Rowhammer  [30], Spectre  [31] or 
Meltdown [32].

Though privacy concerns are out of the scope of this 
paper, it is also worth mentioning that from a privacy 
standpoint there is an increasing concern that cloud pro-
viders can inadvertently or deliberately reveal sensitive 
data to third-parties (e.g., through malicious insiders). 
Due to this latter threat, within the research community 
it is common to model cloud providers as honest-but-
curious entities. Under this model, cloud providers are 
assumed to run their customers functions as intended 
but, at the same time, they may try to learn as much 
information as possible about the ongoing computations 
and hosted data.

In the next sections we analyze the impact of serverless 
computing on security, discussing the pros and cons of 
the paradigm in relationship with its contribution to the 
security posture of the supported ecosystem.

Serverless as a Security Enabler
In this section, we discuss some principles and use cases 
related to the inherent advantages of serverless from a 
security point of view.

Increased difficulty in performing attacks
The fact that serverless functions have small code foot-
prints, are stateless, and short-lived, significantly raises 
the bar for adversaries to successfully execute their 
attacks. Indeed, serverless imposes strict limits on the 
time available to adversaries for retrieving sensitive data 
from functions or for performing lateral movements in 
order to carry out more sophisticated attacks. The high-
lighted features are important because experience has 
shown that adversaries who compromise servers often 
remain undetected for very long periods, carrying out 
malicious activities at a very slow pace, not to generate 
signals that could lead to detection—this is commonly 
known as advanced persistent threats (APTs).

The consequences of such long-lasting attacks can be 
severe, ranging from intellectual property theft (e.g., 

trade secrets or patents), compromised sensitive infor-
mation (e.g., employees and users private data) to total 
site takeovers. With serverless, long-standing servers do 
not exist, thus adversaries must carry out their attacks—
including the reconnaissance phase—again and again, 
increasing both the attack costs and the risks of being 
detected. Additionally, by using small, single-purpose 
functions to realize applications, serverless allows not 
only the definition of more fine-grained security policies, 
but also a significant reduction of the impact of attacks. 
Adversaries who compromise a function can now only 
exploit the “capabilities” of such a function. Finally, due to 
the way applications are designed when using the server-
less paradigm, not all serverless functions need to send 
results back to the Internet, hence hampering adversaries 
from conducting some types of attacks (e.g., those ones 
that aim to exfiltrate sensitive data).

Less security responsibilities for software developers
Unlike prior cloud programming models, where software 
developers play an important role in the security of their 
applications, serverless security is a shared responsibil-
ity between software developers and cloud providers. 
While the cited model alleviates some security concerns 
(mainly those caused by infrastructure management), it 
still requires software developers to be heavily involved 
in security matters.

When it comes to serverless security, it is common to 
distinguish between “security of the cloud” and “security 
in the cloud”, as below detailed.

“Security of the cloud” is the responsibility of cloud 
providers and encompasses all measures in place to keep 
the underlying infrastructure and cloud services (e.g., the 
execution environments on which functions run or the 
virtualization layer) secure from adversaries. Although 
software developers have less control and require trust in 
the chosen cloud provider, delegating all infrastructure-
related security tasks to cloud providers is considered 
to be an effective mechanism to eliminate a wide num-
ber of attacks. Providing, maintaining and operating an 
infrastructure that is secure by design is the core business 
model of cloud providers offering serverless and hence 
one of their main focuses.

“Security in the cloud”, instead, is the responsibility of 
software developers. It refers to the security mechanisms 
employed to: i. prevent vulnerabilities in the functions; ii. 
protect the application’s data (stored in cloud services); and, 
iii. secure the entire workflows (e.g., ensuring that all func-
tions are executed with the minimum privileges required). 
The introduced objectives can be achieved by leveraging 
cloud services and tools that cloud providers make avail-
able to software developers. This gives software develop-
ers the ability to control and manage access to resources, 
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monitor components, log information, verify network 
configurations, protect against DDoS attacks, implement 
firewalls, inspect traffic or secure access control and key 
management (among others). The cited concepts are criti-
cal ones for the security of the serverless functions and 
their workflows, and need to be fully seized by software 
developers, the alternative being the developers ignoring 
the consideration of security for their applications, or to 
make unrealistic assumptions about the security measures 
put in place by cloud providers—in both cases, a dreadful 
scenario.

Resistance to Denial‑of‑Service attacks
Serverless, by construction, enjoys elasticity—it can adapt 
to workload changes by provisioning and de-provisioning 
resources—thanks to its efficient and automatic auto-scal-
ing. As such, serverless platforms provide increased resist-
ance against many different types of DoS/DDoS attacks 
that aim to overwhelm network bandwidth, trigger many 
compute-heavy actions in parallel, or exploit flaws in the 
application, for instance to cause infinite loops. While 
auto-scaling has already been used in previous computing 
paradigms (e.g., microservices), before serverless the cited 
technique required the usage of an external service which 
was complex to use and had to be configured manually by 
software developers. In serverless, auto-scaling is consider-
ably simpler, more effective and less costly, making it a fun-
damental feature for any serverless-based application.

Serverless as a Security Risk
In this section, we detail several aspects of serverless that 
can negatively affect security. Table  1 compares the level 
of security offered by the serverless paradigm against the 
competing ones for a few interesting dimensions.

Larger attack surface
Serverless computing exposes a significantly larger attack 
surface compared to its predecessors for three main 
reasons:

First, as functions are stateless and are only intended 
to perform a single task, they are required to constantly 
interact with other functions and (shared) cloud services. 
However, the definition and enforcement of security 
policies—specifying which functions and cloud services 
can be accessed by each function—in such dynamic and 
complex environments is very complex and thus prone to 
errors [33, 34].

Second, functions can be triggered by many exter-
nal and internal events (e.g., 47 event types in Amazon 
Lambda, 11 event types in Azure and more than 90 event 
types in Google) with multiple formats and encoding. To 
further complicate matters, the trend is that the num-
ber of events supported will increase even more to allow 
other applications to also benefit from serverless offered 
advantages. What above creates many possible entry-
points for adversaries to gain control of functions; even 
more than when using microservices due to the fact that 
serverless applications are stateless and event-driven.

Third, serverless platforms include a number of new 
components and cloud services, many of which are 
shared across users. Again, the fact that serverless func-
tions are stateless, simple, and event-driven, together 
with the fact that cloud providers want to provide greater 
application performance with reduced costs and achieve 
a much more optimal use of their resources, means that 
serverless platforms include many more components 
that are shared between users with respect to previous 
computing paradigms. Such shared components can ena-
ble new forms of side or covert channels that can allow 
adversaries to leak sensitive data or to violate the speci-
fied security policies.

The combination of these factors together opens new 
doors for adversaries to mount attacks and makes it 
harder for cloud providers to defend against them.

Proprietary cloud provider infrastructures
Cloud providers are now the ones responsible for 
conducting all operational and infrastructure tasks, 

Table 1 Security comparison between monolithic applications, microservices, and serverless—in serverless, we consider security 
to be a shared responsibility because many of the responsibilities that software developers used to have are now shifted to cloud 
providers

Monoliths Microservices Serverless

Feasibility of long-lasting attacks High High Low

Main responsible for security Mostly app owners Mostly app owners Shared responsibility

Entry points for adversaries Few Medium Many

Resistance to Denial-of-Service attacks Low Medium High

Resistance to Denial-of-Wallet attacks [25] High Medium Low

Communication with other components None Medium High

Visibility of underlying infrastructure High High Low
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including those aimed to protect their infrastructures 
and the hosted applications from internal and external 
threats. Unfortunately, cloud providers typically keep 
most information about their infrastructures confiden-
tial, making it difficult for security experts to scrutinize 
the security of serverless platforms. Within the security 
research community, it is widely known that relying on 
security-through-obscurity alone is a dangerous approach 
that may conceal insecure designs. Motivated by the 
above rationales, researchers have devoted significant 
efforts into reverse-engineering and documenting how 
the serverless platforms of the main cloud providers were 
developed in an attempt to understand their core design 
decisions (e.g., [21]). Yet, there are still many components 
within serverless platforms that remain unexplored to 
date and hence whose security level is unknown.

Security vs. performance vs. cost.
Ideally, cloud providers would like to develop serverless 
platforms that jointly maximize the security and perfor-
mance of their infrastructures while maximizing their 
revenue and keeping the incurred cost as low as possible. 
However, the cited dimensions are conflicting with each 
other. Therefore, it is important to find a balance between 
them. Experience has shown that cloud providers, when 
it comes to which dimension to curb in order to keep cost 
under control, do not have security at the top of their pri-
ority list of features to preserve. Next, we show how the 
selection and usage of execution environments as well as 
the chosen function placement strategy can influence the 
security, performance and cost of serverless platforms 
and the applications they host.

Execution environments The selection of the execution 
environment in which functions are executed is crucial 
for cloud providers since it strongly impacts the secu-
rity and performance of their serverless platforms (see 
Table 2 for more details). For example, containers entail 
less overhead and provide greater resource utilization 
than VMs but this also results in weaker isolation guar-
antees. A possible solution would have been to combine 

traditional VMs and containers together (e.g., by placing 
all containers of a user inside a VM). However, this would 
have prevented reaping the isolation benefits VMs offer 
and the performance advantages containers provide. The 
synthesis was provided by cloud providers: they have 
opted for developing their own execution environments 
and open-sourcing their code. Without loss of general-
ity we focus on the execution environments proposed 
by Amazon and Google. However, the conclusions we 
reach are also applicable to other well-known execution 
environments like Microsoft’s Hyper-V Technology [36], 
IBM’s Nabla Containers [37] and Kata [38].

Amazon designed Firecracker2, a new execution envi-
ronment that builds upon the KVM hypervisor to create 
and manage so called microVMs through a new virtual 
machine monitor and a new API. Following this trend, 
Google has developed g-Visor3, a user-space application 
kernel that sits between the containerized application 
and the host OS and hence provides an additional layer of 
isolation per container. Although Firecracker and g-Visor 
approaches are promising, neither their attack surface 
nor their security mechanisms have yet been properly 
evaluated by security experts. Thus, research should 
focus on understanding their weaknesses and limitations.

Cold containers vs. warm containers Repeatedly boot-
ing a function from scratch inside a newly-generated 
container (i.e., a cold container) can be an expensive 
operation latency-wise. It is worth reminding that 
most serverless functions are executed only for a very 
short period of time and hence the container’s booting 
latency would be similar to the function’s execution time. 
Another reason why the use of cold containers is an issue 
(from the point of view of the cloud provider) is that cus-
tomers are not billed for the time it takes for their con-
tainers to boot.

Table 2 Comparison between multiple execution environments

Features Traditional VM Docker Containers g‑Visor (Google) microVMs (Amazon)

Number of functionalities in Almost none Almost all Less than in containers More than in VMs

host OS kernel [35]

App startup times Very high Medium Medium High

Isolation guarantees Medium-high Low Medium High

Complexity High Medium-low Medium-low Medium

Written in safe prog. languages No Yes (Go) Yes (Golang) Yes (Rust)

2 https:// firec racker- micro vm. github. io/
3 https:// gvisor. dev/

https://firecracker-microvm.github.io/
https://gvisor.dev/
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Warm containers (i.e., containers that are reused to run 
multiple instances of the same function) reduce the func-
tions’ startup times and improve efficiency, e.g., by keep-
ing and reusing local caches or maintaining long-lived 
connections between invocations. However, the advan-
tages offered by warm containers come at the expense 
of providing fewer security guarantees. To prevent such 
attacks, application owners can disable the possibility of 
reusing the same execution environment to run the same 
function multiple times. Yet, disabling warm containers 
is not always be a viable option since this can degrade the 
application’s performance.

Deterministic vs. random scheduling Let us consider 
the process adopted by cloud providers to assign func-
tions to worker nodes. From a security point of view, 
randomized scheduling algorithms are preferred over 
deterministic ones because they offer stronger protec-
tion against attacks that could exploit co-location. How-
ever, randomized scheduling algorithms do not consider 
functional aspects such as worker nodes’ resource utili-
zation or the existence of warm containers when choos-
ing the worker nodes that will execute the functions. 
This leads to a non-optimal allocation of functions that 
can negatively affect the overall performance of both the 
applications and the underlying serverless infrastructure. 
In practice, to prevent the latter issue, cloud providers 
typically opt for deterministic scheduling algorithms that 
lead to a more optimal use of the available resources and 
less latency overhead. Nevertheless, this approach can be 
vulnerable to attacks by adversaries that can obtain infor-
mation about (or tamper with) the scheduling algorithms 
internals. Thus, research is required to first understand 
all possible attack vectors within this context, and then 
to develop scheduling algorithms that are resistant to 
attacks.

Security Attacks and Countermeasures
In this section, we present the main types of attacks 
against serverless. We group them into two main catego-
ries: (i) application-level attacks that exploit vulnerabili-
ties in the functions’ code; and, (ii) infrastructure-level 
attacks that take advantage of the way the serverless 
architectures are designed and operated. As application-
level attacks have already been covered in a report by 
OWASP  [13], in this section we mainly focus on infra-
structure-level attacks and briefly mention the most 
important security issues at the application level.

Application‑level attacks
In serverless computing, software developers are still 
responsible for guaranteeing the security of their 

applications, i.e., the security in the cloud. Hence, if soft-
ware developers do not adhere to standard secure coding 
practices and write their functions’ code in an insecure 
manner, their functions could contain vulnerabilities that 
can make them vulnerable to traditional application-level 
attacks such as Cross-Site Scripting (XSS), Command/
SQL Injection, Denial of Service (DoS), and many more. 
With serverless computing, the cited attacks (or vari-
ants of them) remain possible; the only difference is that 
sometimes they are carried out in a slightly different way 
(or with a slightly different goal in mind). OWASP has 
released a report detailing the serverless attack surface 
as well as the feasibility and impact of a variety of well-
known application-level attacks when launched against 
serverless applications [13]. Inspired by this report, next 
we briefly describe the most important application-level 
security risks and attacks for serverless functions.

Injection Adversaries can send maliciously-crafted 
packets to functions in order to exploit weaknesses in the 
way they parse the input data. Serverless functions can be 
vulnerable not only to traditional injection attacks (e.g., 
based on SQL/NoSQL or OS commands), but also to new 
types of such attacks caused by the fact that there exist 
many function entry points that can be fully controlled 
by adversaries. Injection attacks could be launched, for 
example, to retrieve the functions’ source code or secrets 
stored within the execution environment. To mitigate 
this concern, each function should always carefully vali-
date and sanitize all received input data before using it 
(even if the data originates from another function and the 
said function is considered to be trusted). In principle, 
validating and sanitizing event data should be no differ-
ent than validating and sanitizing user data. In practice, 
however, the former is much more complex due to the 
large number of events supported and the fact that there 
are still no widely-available and generic security tools 
capable of performing this task automatically in order to 
protect a given application from the described attacks.

Bypass authentication Serverless functions by them-
selves lack the necessary information and context to 
know about other functions and cloud services that are 
part of the application they belong to. In addition to this, 
applications typically comprise a plethora of ephemeral 
functions that can be triggered by many event sources 
and can make use of a variety of (shared) cloud ser-
vices. The previous points make it very hard for applica-
tion owners to apply proper security controls in order 
to restrict access to their functions at all times. Know-
ing the difficulty of properly managing security in such 
complex and dynamic environments, adversaries will try 
to find ways to trigger functions (or pass malicious data 
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to them)—exploiting both the program logic or resorting 
to external invocations— while skipping authentication. 
By doing this, adversaries could exfiltrate private data 
or tamper with the function’s execution flow. A robust 
access control mechanism is essential in the serverless 
platforms to determine if a function invocation request 
is legitimate and has the required permissions to access 
a function or a piece of data. Currently, cloud providers 
typically offer access control techniques as part of their 
cloud service portfolio, with Identity and Access Manage-
ment (IAM) being the most well-known method which 
in turn often incorporates traditional role-based access 
control (RBAC) [39, 40] and attribute-based access con-
trol (ABAC)  [41]. Moreover, several tools and services 
(e.g.,  [42, 43]) have recently been proposed to ease and 
automate the creation of credentials and identities that 
help authenticate the API calls made by users or other 
workloads.

Privilege misconfiguration It is widely known that the 
process of granting permissions to serverless functions 
is a complex task that often results in functions get-
ting more permissions than the ones they need. There 
are several reasons why attacks that exploit these weak-
nesses exist (and will continue to exist at least in the near 
future). First, software developers often do not have suf-
ficient knowledge to define fine-grained security controls 
to limit their functions’ capabilities. Second, following 
the tight deadlines to bring their applications to produc-
tion environments, software developers often do not 
perform enough testing to verify the set of permissions 
assigned to their functions. Finally, and most impor-
tantly, there is a lack of mechanisms to dynamically and 
automatically identify and configure the minimum set of 
permissions needed by applications.

De-serialization and usage of third-party librar-
ies Serverless functions are written in a number of pro-
gramming languages, some of which are scripting-based 
(e.g., Python and NodeJS) that often use serialized data 
types such as JSON. All these programming languages 
have their own quirks which can lead to unexpected 
evaluations of untrusted data. This originates not only 
from the programming language itself, but from frame-
works incorporated into the application—typically, to 
enable faster code development. Due to the difficulty of 
protecting against deserialization vulnerabilities, it is 
strongly recommended to avoid user input deserializa-
tion unless absolutely necessary. If the latter is not pos-
sible, then software developers must consider and incor-
porate robust measures that (at least) guarantee that the 
data has not been tampered with (e.g., through the usage 
of digital signatures).

In addition, functions often rely on many (potentially 
insecure) third-party libraries to handle many critical 
tasks. The problem is that, because of the complexity of 
the applications, software developers are typically not 
fully aware of the third-party components used and con-
sequently they do not keep them up-to-date. As a result, 
functions can contain weaknesses that could allow adver-
saries to run arbitrary code, leak data, or even worse, gain 
full control of the functions. To alleviate this concern, 
software developers should keep good track of the third-
party libraries they use, and should apply the necessary 
measures to ensure that every function builds its own 
security perimeter. In this regards, it is commendable the 
initiative related to the SW bill of materials initiative [44].

Infrastructure‑level attacks
In the following, we outline possible infrastructure-level 
attacks within the serverless ecosystem that, to a large 
extent, remain relatively unexplored. Therefore, we urge 
the scientific community to investigate them before the 
full adoption of serverless technology.

Side channel attacks Adversaries can attempt to exploit 
the way serverless platforms are designed and imple-
mented in order to conduct new forms of side channel 
attacks. For example, they could leverage weaknesses 
in the execution environments where functions are run 
in order to obtain host-system state information (e.g., 
power consumption or performance data) or individual 
process execution information (e.g., process scheduling, 
cgroups or process running status). This information can 
help adversaries to uniquely identify a worker node or a 
function instance, and ultimately to conduct more effec-
tive and efficient attacks. Equally, as shown by Figure 2, 
the sequence of functions traversed in response to exter-
nal events triggered by users can also reveal information 
to adversaries (e.g., the role of the person triggering the 
request). As functions are triggered reactively in response 
to an action performed by a user, adversaries could gain 
insights about the users by looking at the functions’ 
metadata (e.g., when or how often functions are called).

More sophisticated side channels can also be devised, 
based on the fact that there exist many components and 
cloud services shared across users. In particular, adver-
saries are interested in any shared component subject to 
a change in its state based on the processed data—since 
these components could leak sensitive data about users 
and functions through a side channel. Note that side 
channel attacks in the context of serverless computing 
have not yet been investigated by the scientific commu-
nity. Thus, an in-depth evaluation is needed to identify 
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new serverless-specific attacks, then analyze their fea-
sibility, extent and consequences, and finally to propose 
effective countermeasures in order to defend against 
them.

Race conditions Serverless platforms can be vulner-
able to attacks caused by inconsistencies in any compo-
nent whose functionality is distributed across several 
nodes or that contains multiple replicas. For example, 
let us assume that software developers decide to mod-
ify the code of a given function while several replicas of 
this function are running. In such a case, there can be a 
(small) time window where the serverless platform is in 
an inconsistent state where some incoming requests are 
handled by an old version of the function and some oth-
ers by the new version  [21]. Such inconsistencies could 
be caused, for example, by cloud providers reusing execu-
tion environments with the old version of the function 
for a certain period of time. Adversaries could abuse such 
undesirable behavior to conduct security attacks with the 
goal of accessing or modifying data that otherwise would 
no longer be available to them.

Similar attacks could also be carried out when other 
parameters are modified (e.g., IAM roles, memory sizes, 
or environment variables) while multiple replicas of the 
same function are executed. Modifying these parameters 
at runtime can lead to race conditions that adversaries 
can exploit to lower the overall security of the server-
less platform. While race conditions can also happen 

in a microservices architecture, the smaller granular-
ity offered by serverless platforms increases the risk of 
inconsistencies across function versions. Overall, we 
believe that this research area deserves more attention 
from the scientific community, both to understand the 
security threats and to design effective countermeasures 
against them.

Long-lasting attacks As explained in Section  4, tra-
ditional long-lasting attacks that target servers are not 
applicable in the context of serverless computing. How-
ever, researchers have reported that it is possible for 
adversaries to execute a new class of long-lasting attacks 
by placing malicious code in the (writable) /tmp/ disk 
space used by warm containers to store temporary infor-
mation across invocations  [45, 46]. The main challenge 
to perform such attacks is that, as /tmp/ is intended to 
be used only for maintaining temporary state, their size 
is relatively small (e.g., 512MB in Amazon Lambda). This 
poses some restrictions on the type and size of the code 
adversaries can place inside them. One way for adver-
saries to overcome this limitation would be to run code 
that communicates with external endpoints controlled by 
them. However, most serverless platforms give applica-
tion owners access to security tools that could preclude 
such disallowed external communication. Despite this, 
there is still the need for investigating which attacks could 
be run from the /tmp/ disk space or any other directory 
within a given execution environment that is kept intact 
across multiple invocations of the same function. These 

Fig. 2 This figure illustrates an application composed by various functions chained together. Let us assume that Function 1 is responsible for 
authenticating the application’s administrators as well as end-users before their requests are passed to other functions. Imagine that the request 
is passed to Function 2 and Function 3 if the request originates from administrators, while if the request comes from end-users this is handled by 
Function 4 and Function 5. In such a case, the application’s control flow can easily leak the role of the person issuing the request or the times at 
which the application is accessed by administrators and end-users
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attacks are likely to become a more important threat in 
the near future as serverless platforms evolve to fit the 
needs of stateful functions (e.g.,  [47]), since this will 
require placing more storage closer to the functions. As 
for countermeasures, in case the usage of warm con-
tainers is required to meet the application performance 
requirements, one possible way to mitigate the exposed 
issue would be for cloud providers to reduce the size of 
the /tmp/ folder to the minimum extent possible and to 
carefully monitor its contents after every function invo-
cation. Here the challenge is how to distinguish between 
the legitimate data stored in the /tmp/ directory (the 
ones that come from the application) and the malicious 
code that adversaries could store therein.

Billing attacks Though serverless offers increased pro-
tection against traditional DoS/DDoS attacks, these 
attacks can be engineered to lead to new, serverless-spe-
cific attacks that take advantage of the fact that applica-
tion owners are billed based on the amount of resources 
their functions consume. By sending many requests to 
functions, adversaries can now perform the so called 
Denial-of-Wallet (DoW) attacks  [25] with the purpose 
of significantly increasing the cost for application own-
ers. Although some mitigating countermeasures already 
exist against DoW attacks (e.g., setting an upper limit on 
invocations concurrency and instances quota on function 
creation or creating a billing alert to notify application 
owners if they exceed a predefined spending limit), these 
attacks are not easy to defend against and require addi-
tional control measures: first, to detect abnormal behav-
ior; and, later to discriminate which legitimate invoca-
tions to allow, and which ones to drop.

The uniqueness of serverless in this context, is the fact 
that invocation and billing happen at a very small gran-
ularity, i.e., the function. Hence, an adversary can per-
form these attacks by invoking a function many times, 
while in other auto-scaling constructions adversaries 
would require the generation of a high load on a full con-
tainer or VM to succeed. As such, the consequences of 
successfully launching such attacks can be more severe 
when targeting serverless platforms. Moreover, given the 
fact that computation can evolve only via function calls, 
blocking legitimate function invocations would represent 
a more serious threat than that experienced by the cited 
auto-scaling twins of serverless.

Conclusions
In this paper we have shown that, on the one hand, 
serverless computing provides additional security fea-
tures while, on the other hand, it also introduces unique 
security threats and challenges—clearly differentiating 

itself from current virtualization technologies. In par-
ticular, we have reviewed current serverless architec-
tures, categorized the current security threats, shown 
actionable hints to improve the current security pos-
ture, and highlighted security research directions to 
make serverless the paradigm of choice when looking 
for virtualization solutions where security is at a pre-
mium. We believe that our contribution, other than 
being valuable on its own, also paves the way for fur-
ther research in this domain, a challenging and relevant 
one for practitioners, Industry, and Academia.
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