
Marin et al. Journal of Cloud Computing (2022) 11:69
https://doi.org/10.1186/s13677-022-00347-w

REVIEW

Serverless computing: a security perspective
Eduard Marin1*, Diego Perino1 and Roberto Di Pietro2

Abstract

In this article we review the current serverless architectures, abstract and categorize their founding principles, and
provide an in-depth security analysis. In particular, we: show the security shortcomings of the analyzed serverless
architectural paradigms; point to possible countermeasures; and, highlight several research directions for practition-
ers, Industry, and Academia.

Keywords: Cloud computing, Serverless computing, Security, Threat models, Vulnerabilities, Architectures

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Introduction
Virtualization technologies have played a crucial role for
the wide adoption and success of cloud computing [1].
They allowed cloud providers to simultaneously share
their resources with many users by placing their mono-
lithic applications inside virtual machines (VMs), offering
strong isolation guarantees while providing users with an
(apparently) infinite amount of resources, readily avail-
able when their applications needed them. The cited fea-
tures, together with a pay-per-use business model that
has contributed to lower the total cost of ownership for
cloud users, have made cloud computing the most suc-
cessful computing paradigm of the last decade. However,
this success also came with some drawbacks, the major
one being the need for the users to directly manage the
VMs [2].

In response to the above issue, we have witnessed the
emergence of new programming models that drasti-
cally changed the way software developers develop and
manage applications for the cloud. One such program-
ming model relies on decomposing an application into
multiple, autonomous, limited scope and loosely cou-
pled components—also known as microservices—that
can communicate with each other via standard APIs.
Unfortunately, due to their long startup time and high
resource usage, VMs were proven to be inefficient for

running microservices. This led to the proposal of sev-
eral container technologies (e.g., Docker) as a lighter
alternative. Containers offer increased portability, lower
start up time, and greater resource utilization than VMs,
simplifying the development and management of large-
scale applications in the cloud. These advantages have
led cloud providers to adopt container technologies and
to use them in combination with orchestration platforms
(e.g., Kubernetes or Docker Swarm) to fully automate
the deployment, scaling, and management of microser-
vice-based applications in the cloud. However, similarly
to when VMs are used, the microservices paradigm still
requires users to configure and manage the underlying
containers (e.g., related libraries and software depend-
encies), and relies on a static billing model where users
pay a fixed amount for the allocated resources and not for
the resources actually consumed. The cited points render
microservices unsuitable for certain types of applications.

Serverless computing is emerging as a new comput-
ing paradigm for the deployment of applications in the
cloud1. It has two important advantages over its prede-
cessors. Firstly, it allows software developers to outsource
all infrastructure management and operational tasks to

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: eduard.marinfabregas@telefonica.com

1 Telefonica Research, Barcelona, Spain
Full list of author information is available at the end of the article

1 It is worth noting that the term “serverless” does not mean that there are no
servers, but rather that software developers do not need to worry about con-
figuring and managing them.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00347-w&domain=pdf

Page 2 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

cloud providers, which makes it possible for them to focus
only on the business logic of their applications [3, 4]. Sec-
ondly, it follows a pure pay-per-use model, where users are
only charged based on the resources they consume. Cur-
rently, serverless computing comes in two different fla-
vors, known as backend as a service (BaaS) and function
as a service (FaaS). The core idea behind BaaS is to provide
software developers a set of services and tools (e.g., data-
bases, APIs, file storage or push notifications) to ease and
speed up the development of mobile and web applications.
As per FaaS, it focuses on allowing software developers to
deploy and execute their own functions on the cloud (note
that the functions can also utilize additional services as
those offered in BaaS). To date, FaaS is considered as the
most dominant serverless model. In the rest of this article,
we will use the term “serverless” to refer to FaaS.

Due to its simplicity and economical advantages, server-
less computing is gaining significant attention in the indus-
try as a compelling paradigm to deploy applications and
services in the cloud. Cloud providers, such as Amazon [5],
Microsoft [6], Google [7], IBM [8] or Alibaba [9] are already
offering serverless computing services to their custom-
ers. Similarly, many enterprises, such as Netflix, T-Mobile
and Realtor, are already reaping the benefits of server-
less computing [10]. According to recent market surveys,
the serverless computing market is expected to grow at a
CAGR of 26% during the period 2020-2029 [11]. However,
with the increase in volume and diversity of attacks against
the cloud, it becomes apparent that security and privacy
will be a key factor which, if not addressed, could hamper
the widespread adoption of serverless computing.

In particular, as per serverless security, at first glance one
could argue that serverless computing is intrinsically more
secure than its predecessors because of its characteristics
(e.g., the short duration of functions), or due to the fact
that it could inherit security features already developed
for other virtualization solutions. Yet, as we will show in
the following, serverless brings many new, idiosyncratic
security challenges that open the door for new types of
security attacks. Further, implementing serverless appli-
cations requires a major change in mindset from software
developers [12], not only in the way applications are writ-
ten but also in the way they are protected from security
attacks [13]. These latter requirements are rarely met,
hence introducing new vulnerabilities.
Contribution. This work is, to the best of our knowl-

edge, the first structured and principled attempt to shed
light on the security of serverless computing. In particu-
lar, in this paper, we first review and categorize state of the
art serverless solutions; later, we analyze pros and cons of
the introduced architectural categories; further, we assess,
from a security perspective, the fundamental principles
of the main revised architectural choices. Finally, starting

from the highlighted weaknesses, we sketch a few solu-
tions and provide several research directions, appealing to
practitioners, Industry, and Academia, to further enhance
the security of the serverless ecosystem as a whole.
Roadmap. The sequel of this paper is structured as fol-

lows: In Section 2 we provide the necessary background
for the reader to understand the main motivation behind
serverless computing, its advantages, the components any
serverless platform is composed of and the security mecha-
nisms that are commonly employed to thwart attacks. Sec-
tion 3 defines the threat model. Section 4 discusses some
inherent properties of serverless that are beneficial secu-
rity-wise while in Section 5 we cover aspects of serverless
that could negatively affect security. In Section 6 we devise
a list of possible application-level and infrastructure-level
attacks which we believe deserve further attention. This is
followed by possible countermeasures to alleviate them.
Finally, Section 7 provides concluding remarks.

Background
In this section, we revise the current serverless ecosys-
tem. More concretely, we first briefly introduce server-
less computing, then analyze the five main elements any
serverless platform is composed of, and finally discuss
the currently available security solutions.

Serverless computing
In serverless computing, the application logic is divided
into a set of small, short-lived and stateless functions, each
one running within a separate execution environment (e.g.,
a container), that communicate with each other and with
various cloud services (e.g., storage services) to carry out
their tasks. By using stateless functions, serverless comput-
ing decouples storage from computation, making it pos-
sible to provision, manage, and price these two elements
separately. Furthermore, in this context the cloud pro-
vider is now responsible for automatically and transpar-
ently spawning and managing function instances in worker
nodes as well as performing all operational tasks (e.g.,
server and OS maintenance, patching, logging, load balanc-
ing or auto-scaling). Finally, serverless computing also sig-
nificantly reduces application deployment cost via a pure
pay-per-use model where users are only billed based on the
resources (e.g., CPU, network or memory) they consume.

Besides the clear advantages serverless offers to software
developers (in terms of flexibility, scalability, performance
and costs), it is worth noting that cloud providers can ben-
efit from using it too. As functions are invoked only occa-
sionally and are executed for a very short period of time,
cloud providers can achieve a higher degree of co-location
in their servers and further optimize the usage of their
resources. These two latter points, when carefully planned

Page 3 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

and orchestrated, can result in an even more profitable
model for cloud providers.

Serverless ecosystem
As shown in Figure 1, a serverless platform is comprised
of (at least) five elements: i. functions; ii. API gateways;
iii. (shared) cloud services; iv. security tools; and, v. con-
trol plane.

 1) Functions. Functions are the core component of
serverless platforms. They can be written in many different
programming languages (e.g., JavaScript, Python, and Go).
Software developers can either write them by themselves,
rely on open-source third-party functions (e.g., [14]), or
use proprietary functions for which they must pay licens-
ing fees. Functions are typically run inside a newly-gen-
erated, isolated execution environment (e.g., a container)
within a worker node. The cited functions are executed in
response to external and/or internal events specified by
application owners (e.g., HTTP requests, modification to
objects in storage, table updates, or function transitions). It
is worth noting that not all defined functions must neces-
sarily communicate directly with the outside world (it may
be the case that there are functions that can only commu-
nicate with other functions and cloud services and that are
not directly accessible from the outside).

 2) Cloud services. Current serverless platforms inte-
grate a wide range of cloud services used to extend the
functions’ capabilities, e.g., to collect various types of
data (e.g., using Amazon Kinesis), to quickly react to
events (e.g., using Google cloud pub/sub message bus
system or API Gateways), to manage the entire applica-
tion lifecycle and enable DevOps capabilities (e.g., using
Microsoft Azure DevOps) or to achieve long- and short-
term storage (e.g., using Amazon S3 and DynamoDB).

 3) Security tools. Cloud providers make available to soft-
ware developers a set of tools and services to ease workflows
security management. Some of these tools and services are
also used in the context of microservices; however, the task
of configuring them correctly becomes much more chal-
lenging in serverless. For example, the Identity and Access
Management (IAM) service, which allows the configuration
of fine-grained access controls to authenticate and restrict
the resources functions have access to. Another widely used
security service is the so called Virtual Private Cloud (VPC),
which allows the creation of private, isolated networks for
secure communications between applications that belong
to the same organization. In addition to the cited services,
we believe that other services and tools, such as those used
for Runtime Application Self-Protection (RASP), Infrastruc-
ture as Code (IaC) scanning, and source code composition

Fig. 1 Serverless platform

Page 4 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

analysis, can play an important role in protecting serverless
applications and serverless platforms against attacks.

 4) Control plane functionalities. Serverless platforms
typically comprise multiple control plane functionali-
ties for cloud providers to operate, manage, and monitor
their infrastructures. For example, there is an orches-
trator component that handles the process of assigning
functions to worker nodes. Similarly, a monitoring com-
ponent is used to periodically check the status of worker
nodes, the software they execute, as well as the execution
environments that run on them. To this end, the moni-
toring component gathers metering data, logs, and a few
metrics emitted by the worker nodes. This way, if a failure
is detected, the affected functions can be quickly instan-
tiated in other worker nodes. While the functionali-
ties can vary slightly across several serverless platforms,
all of them have in common the fact that the data plane
needs to receive periodic configuration updates from the
control plane, and the control plane needs to frequently
receive (or collect) operational state from the data plane.
Thus, it is fundamental for the control plane to stay in
sync with the data plane.

Existing infrastructure‑level security controls
Today’s serverless platforms typically run functions inside
containers (or similar execution environments) that are
protected by various open-source security mechanisms
and services (some of which are built into the Linux ker-
nel) in combination with security mechanisms developed
by the cloud providers themselves. In the following, we
focus solely on open-source, widely used security mecha-
nisms (as the mechanisms developed by cloud providers
are typically adhoc, and are often not public or well doc-
umented). Note that these security mechanisms play an
important role in the security of execution environments
used in today’s production environments like g-Visor and
Firecracker; g-Visor is essentially an additional security
layer that is developed atop the Linux security mecha-
nisms, whereas the Firecracker sandboxes (run in user
space) are also restricted by Linux security mechanisms
like seccomp, cgroup, and namespaces.

These security mechanisms can be clustered into the
following four categories: (i) host hardening; (ii) isola-
tion of processes; (iii) network security; and, (iv) access
control. For an overview of security mechanisms in
the first three categories, we refer the reader to [15] (as
these mechanisms are generally applicable to containers
regardless of what is executed inside them). As for access
control, cloud providers typically offer several mecha-
nisms built-in in the API gateway to throttle, cache,
authenticate, and authorize external API calls before
passing the requests to the corresponding functions,
e.g., relying on external identity providers or specifying a

range of IP addresses from which legitimate requests can
originate.

Security of current mechanisms. Over the last few years,
researchers have investigated in depth the real security
guarantees provided by the existing mechanisms used to
protect container-based infrastructures. This resulted in
the identification of serious weaknesses in the security
mechanisms used for process isolation [16] and network
security [17]. In addition, previous work pointed out that
host hardening mechanisms, such as seccomp, AppAr-
mor and SELinux, require cloud operators to manually
configure them, which is a laborious task that is prone to
errors.

Threat Model
Serverless platforms are complex and dynamic ecosys-
tems with many distinct components. To design a secure
serverless ecosystem, one must consider the security pro-
vided by each of its components and their interplay. Fur-
ther, to properly frame the serverless security ecosystem,
as it will be done in the sequel, we first need to define
the corresponding threat model. To this aim, we mainly
distinguish between two types of adversaries: i. external;
and, ii. internal, discussed in the following.

External adversaries typically carry out their attacks
from outside the cloud by leveraging user-controlled
input fields in any of the existing APIs that are offered
to handle events. The same is true for serverless plat-
forms. These attacks can enable adversaries to run arbi-
trary commands inside the function in order to retrieve
sensitive data (e.g., session tokens stored in environment
tables) or tamper with the execution of any function (or
cloud service that receives maliciously-crafted input data
and does not apply proper input data sanitation tech-
niques). While some injection attacks are well-known
because they are applicable to standard web applications
(e.g., those ones that exploit cross-site scripting or the
ones based on code/command injection), serverless func-
tions can instead be triggered from many different event
sources—this latter feature broadening significantly their
attack surface [18, 19].

Internal adversaries refer to adversaries who have full
control of one (or more) functions and conduct attacks
from inside the cloud. In the case of public clouds, it is
relatively easy for such adversaries to deploy malicious
functions in order to attempt to perform attacks from
the inside. These adversaries can attempt to: i. create
covert channels [20, 21]; ii. conduct privilege escalation
attacks (e.g., to compromise other co-resident functions
or worker nodes) [22]; iii. retrieve or tamper with sen-
sitive data (e.g., data in storage services) [23]; iv. gather
knowledge about runtime environments and infrastruc-
ture [21]; or, v. conduct various types of Denial-of-Service

Page 5 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

(DoS) attacks [24] (including so called Denial-of-Wallet
attacks) [21, 25, 26]. In a separate line of work, research-
ers have also shown that if registry services exist where
serverless functions developed by other software devel-
opers can be found, adversaries with access to the reg-
istry can carry out so called typosquatting attacks [27].
The goal of such attacks is to distribute malicious con-
tainer images by exploiting the potential typos made by
container users. Similarly, there exist attacks whereby
the goal of adversaries is to influence the scheduler to
co-locate the attacker’s application with a targeted vic-
tim applications [28, 29]. It is worth mentioning that
co-location is an important prerequisite to perform
certain attacks like Rowhammer [30], Spectre [31] or
Meltdown [32].

Though privacy concerns are out of the scope of this
paper, it is also worth mentioning that from a privacy
standpoint there is an increasing concern that cloud pro-
viders can inadvertently or deliberately reveal sensitive
data to third-parties (e.g., through malicious insiders).
Due to this latter threat, within the research community
it is common to model cloud providers as honest-but-
curious entities. Under this model, cloud providers are
assumed to run their customers functions as intended
but, at the same time, they may try to learn as much
information as possible about the ongoing computations
and hosted data.

In the next sections we analyze the impact of serverless
computing on security, discussing the pros and cons of
the paradigm in relationship with its contribution to the
security posture of the supported ecosystem.

Serverless as a Security Enabler
In this section, we discuss some principles and use cases
related to the inherent advantages of serverless from a
security point of view.

Increased difficulty in performing attacks
The fact that serverless functions have small code foot-
prints, are stateless, and short-lived, significantly raises
the bar for adversaries to successfully execute their
attacks. Indeed, serverless imposes strict limits on the
time available to adversaries for retrieving sensitive data
from functions or for performing lateral movements in
order to carry out more sophisticated attacks. The high-
lighted features are important because experience has
shown that adversaries who compromise servers often
remain undetected for very long periods, carrying out
malicious activities at a very slow pace, not to generate
signals that could lead to detection—this is commonly
known as advanced persistent threats (APTs).

The consequences of such long-lasting attacks can be
severe, ranging from intellectual property theft (e.g.,

trade secrets or patents), compromised sensitive infor-
mation (e.g., employees and users private data) to total
site takeovers. With serverless, long-standing servers do
not exist, thus adversaries must carry out their attacks—
including the reconnaissance phase—again and again,
increasing both the attack costs and the risks of being
detected. Additionally, by using small, single-purpose
functions to realize applications, serverless allows not
only the definition of more fine-grained security policies,
but also a significant reduction of the impact of attacks.
Adversaries who compromise a function can now only
exploit the “capabilities” of such a function. Finally, due to
the way applications are designed when using the server-
less paradigm, not all serverless functions need to send
results back to the Internet, hence hampering adversaries
from conducting some types of attacks (e.g., those ones
that aim to exfiltrate sensitive data).

Less security responsibilities for software developers
Unlike prior cloud programming models, where software
developers play an important role in the security of their
applications, serverless security is a shared responsibil-
ity between software developers and cloud providers.
While the cited model alleviates some security concerns
(mainly those caused by infrastructure management), it
still requires software developers to be heavily involved
in security matters.

When it comes to serverless security, it is common to
distinguish between “security of the cloud” and “security
in the cloud”, as below detailed.

“Security of the cloud” is the responsibility of cloud
providers and encompasses all measures in place to keep
the underlying infrastructure and cloud services (e.g., the
execution environments on which functions run or the
virtualization layer) secure from adversaries. Although
software developers have less control and require trust in
the chosen cloud provider, delegating all infrastructure-
related security tasks to cloud providers is considered
to be an effective mechanism to eliminate a wide num-
ber of attacks. Providing, maintaining and operating an
infrastructure that is secure by design is the core business
model of cloud providers offering serverless and hence
one of their main focuses.

“Security in the cloud”, instead, is the responsibility of
software developers. It refers to the security mechanisms
employed to: i. prevent vulnerabilities in the functions; ii.
protect the application’s data (stored in cloud services); and,
iii. secure the entire workflows (e.g., ensuring that all func-
tions are executed with the minimum privileges required).
The introduced objectives can be achieved by leveraging
cloud services and tools that cloud providers make avail-
able to software developers. This gives software develop-
ers the ability to control and manage access to resources,

Page 6 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

monitor components, log information, verify network
configurations, protect against DDoS attacks, implement
firewalls, inspect traffic or secure access control and key
management (among others). The cited concepts are criti-
cal ones for the security of the serverless functions and
their workflows, and need to be fully seized by software
developers, the alternative being the developers ignoring
the consideration of security for their applications, or to
make unrealistic assumptions about the security measures
put in place by cloud providers—in both cases, a dreadful
scenario.

Resistance to Denial‑of‑Service attacks
Serverless, by construction, enjoys elasticity—it can adapt
to workload changes by provisioning and de-provisioning
resources—thanks to its efficient and automatic auto-scal-
ing. As such, serverless platforms provide increased resist-
ance against many different types of DoS/DDoS attacks
that aim to overwhelm network bandwidth, trigger many
compute-heavy actions in parallel, or exploit flaws in the
application, for instance to cause infinite loops. While
auto-scaling has already been used in previous computing
paradigms (e.g., microservices), before serverless the cited
technique required the usage of an external service which
was complex to use and had to be configured manually by
software developers. In serverless, auto-scaling is consider-
ably simpler, more effective and less costly, making it a fun-
damental feature for any serverless-based application.

Serverless as a Security Risk
In this section, we detail several aspects of serverless that
can negatively affect security. Table 1 compares the level
of security offered by the serverless paradigm against the
competing ones for a few interesting dimensions.

Larger attack surface
Serverless computing exposes a significantly larger attack
surface compared to its predecessors for three main
reasons:

First, as functions are stateless and are only intended
to perform a single task, they are required to constantly
interact with other functions and (shared) cloud services.
However, the definition and enforcement of security
policies—specifying which functions and cloud services
can be accessed by each function—in such dynamic and
complex environments is very complex and thus prone to
errors [33, 34].

Second, functions can be triggered by many exter-
nal and internal events (e.g., 47 event types in Amazon
Lambda, 11 event types in Azure and more than 90 event
types in Google) with multiple formats and encoding. To
further complicate matters, the trend is that the num-
ber of events supported will increase even more to allow
other applications to also benefit from serverless offered
advantages. What above creates many possible entry-
points for adversaries to gain control of functions; even
more than when using microservices due to the fact that
serverless applications are stateless and event-driven.

Third, serverless platforms include a number of new
components and cloud services, many of which are
shared across users. Again, the fact that serverless func-
tions are stateless, simple, and event-driven, together
with the fact that cloud providers want to provide greater
application performance with reduced costs and achieve
a much more optimal use of their resources, means that
serverless platforms include many more components
that are shared between users with respect to previous
computing paradigms. Such shared components can ena-
ble new forms of side or covert channels that can allow
adversaries to leak sensitive data or to violate the speci-
fied security policies.

The combination of these factors together opens new
doors for adversaries to mount attacks and makes it
harder for cloud providers to defend against them.

Proprietary cloud provider infrastructures
Cloud providers are now the ones responsible for
conducting all operational and infrastructure tasks,

Table 1 Security comparison between monolithic applications, microservices, and serverless—in serverless, we consider security
to be a shared responsibility because many of the responsibilities that software developers used to have are now shifted to cloud
providers

Monoliths Microservices Serverless

Feasibility of long-lasting attacks High High Low

Main responsible for security Mostly app owners Mostly app owners Shared responsibility

Entry points for adversaries Few Medium Many

Resistance to Denial-of-Service attacks Low Medium High

Resistance to Denial-of-Wallet attacks [25] High Medium Low

Communication with other components None Medium High

Visibility of underlying infrastructure High High Low

Page 7 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

including those aimed to protect their infrastructures
and the hosted applications from internal and external
threats. Unfortunately, cloud providers typically keep
most information about their infrastructures confiden-
tial, making it difficult for security experts to scrutinize
the security of serverless platforms. Within the security
research community, it is widely known that relying on
security-through-obscurity alone is a dangerous approach
that may conceal insecure designs. Motivated by the
above rationales, researchers have devoted significant
efforts into reverse-engineering and documenting how
the serverless platforms of the main cloud providers were
developed in an attempt to understand their core design
decisions (e.g., [21]). Yet, there are still many components
within serverless platforms that remain unexplored to
date and hence whose security level is unknown.

Security vs. performance vs. cost.
Ideally, cloud providers would like to develop serverless
platforms that jointly maximize the security and perfor-
mance of their infrastructures while maximizing their
revenue and keeping the incurred cost as low as possible.
However, the cited dimensions are conflicting with each
other. Therefore, it is important to find a balance between
them. Experience has shown that cloud providers, when
it comes to which dimension to curb in order to keep cost
under control, do not have security at the top of their pri-
ority list of features to preserve. Next, we show how the
selection and usage of execution environments as well as
the chosen function placement strategy can influence the
security, performance and cost of serverless platforms
and the applications they host.

Execution environments The selection of the execution
environment in which functions are executed is crucial
for cloud providers since it strongly impacts the secu-
rity and performance of their serverless platforms (see
Table 2 for more details). For example, containers entail
less overhead and provide greater resource utilization
than VMs but this also results in weaker isolation guar-
antees. A possible solution would have been to combine

traditional VMs and containers together (e.g., by placing
all containers of a user inside a VM). However, this would
have prevented reaping the isolation benefits VMs offer
and the performance advantages containers provide. The
synthesis was provided by cloud providers: they have
opted for developing their own execution environments
and open-sourcing their code. Without loss of general-
ity we focus on the execution environments proposed
by Amazon and Google. However, the conclusions we
reach are also applicable to other well-known execution
environments like Microsoft’s Hyper-V Technology [36],
IBM’s Nabla Containers [37] and Kata [38].

Amazon designed Firecracker2, a new execution envi-
ronment that builds upon the KVM hypervisor to create
and manage so called microVMs through a new virtual
machine monitor and a new API. Following this trend,
Google has developed g-Visor3, a user-space application
kernel that sits between the containerized application
and the host OS and hence provides an additional layer of
isolation per container. Although Firecracker and g-Visor
approaches are promising, neither their attack surface
nor their security mechanisms have yet been properly
evaluated by security experts. Thus, research should
focus on understanding their weaknesses and limitations.

Cold containers vs. warm containers Repeatedly boot-
ing a function from scratch inside a newly-generated
container (i.e., a cold container) can be an expensive
operation latency-wise. It is worth reminding that
most serverless functions are executed only for a very
short period of time and hence the container’s booting
latency would be similar to the function’s execution time.
Another reason why the use of cold containers is an issue
(from the point of view of the cloud provider) is that cus-
tomers are not billed for the time it takes for their con-
tainers to boot.

Table 2 Comparison between multiple execution environments

Features Traditional VM Docker Containers g‑Visor (Google) microVMs (Amazon)

Number of functionalities in Almost none Almost all Less than in containers More than in VMs

host OS kernel [35]

App startup times Very high Medium Medium High

Isolation guarantees Medium-high Low Medium High

Complexity High Medium-low Medium-low Medium

Written in safe prog. languages No Yes (Go) Yes (Golang) Yes (Rust)

2 https:// firec racker- micro vm. github. io/
3 https:// gvisor. dev/

https://firecracker-microvm.github.io/
https://gvisor.dev/

Page 8 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

Warm containers (i.e., containers that are reused to run
multiple instances of the same function) reduce the func-
tions’ startup times and improve efficiency, e.g., by keep-
ing and reusing local caches or maintaining long-lived
connections between invocations. However, the advan-
tages offered by warm containers come at the expense
of providing fewer security guarantees. To prevent such
attacks, application owners can disable the possibility of
reusing the same execution environment to run the same
function multiple times. Yet, disabling warm containers
is not always be a viable option since this can degrade the
application’s performance.

Deterministic vs. random scheduling Let us consider
the process adopted by cloud providers to assign func-
tions to worker nodes. From a security point of view,
randomized scheduling algorithms are preferred over
deterministic ones because they offer stronger protec-
tion against attacks that could exploit co-location. How-
ever, randomized scheduling algorithms do not consider
functional aspects such as worker nodes’ resource utili-
zation or the existence of warm containers when choos-
ing the worker nodes that will execute the functions.
This leads to a non-optimal allocation of functions that
can negatively affect the overall performance of both the
applications and the underlying serverless infrastructure.
In practice, to prevent the latter issue, cloud providers
typically opt for deterministic scheduling algorithms that
lead to a more optimal use of the available resources and
less latency overhead. Nevertheless, this approach can be
vulnerable to attacks by adversaries that can obtain infor-
mation about (or tamper with) the scheduling algorithms
internals. Thus, research is required to first understand
all possible attack vectors within this context, and then
to develop scheduling algorithms that are resistant to
attacks.

Security Attacks and Countermeasures
In this section, we present the main types of attacks
against serverless. We group them into two main catego-
ries: (i) application-level attacks that exploit vulnerabili-
ties in the functions’ code; and, (ii) infrastructure-level
attacks that take advantage of the way the serverless
architectures are designed and operated. As application-
level attacks have already been covered in a report by
OWASP [13], in this section we mainly focus on infra-
structure-level attacks and briefly mention the most
important security issues at the application level.

Application‑level attacks
In serverless computing, software developers are still
responsible for guaranteeing the security of their

applications, i.e., the security in the cloud. Hence, if soft-
ware developers do not adhere to standard secure coding
practices and write their functions’ code in an insecure
manner, their functions could contain vulnerabilities that
can make them vulnerable to traditional application-level
attacks such as Cross-Site Scripting (XSS), Command/
SQL Injection, Denial of Service (DoS), and many more.
With serverless computing, the cited attacks (or vari-
ants of them) remain possible; the only difference is that
sometimes they are carried out in a slightly different way
(or with a slightly different goal in mind). OWASP has
released a report detailing the serverless attack surface
as well as the feasibility and impact of a variety of well-
known application-level attacks when launched against
serverless applications [13]. Inspired by this report, next
we briefly describe the most important application-level
security risks and attacks for serverless functions.

Injection Adversaries can send maliciously-crafted
packets to functions in order to exploit weaknesses in the
way they parse the input data. Serverless functions can be
vulnerable not only to traditional injection attacks (e.g.,
based on SQL/NoSQL or OS commands), but also to new
types of such attacks caused by the fact that there exist
many function entry points that can be fully controlled
by adversaries. Injection attacks could be launched, for
example, to retrieve the functions’ source code or secrets
stored within the execution environment. To mitigate
this concern, each function should always carefully vali-
date and sanitize all received input data before using it
(even if the data originates from another function and the
said function is considered to be trusted). In principle,
validating and sanitizing event data should be no differ-
ent than validating and sanitizing user data. In practice,
however, the former is much more complex due to the
large number of events supported and the fact that there
are still no widely-available and generic security tools
capable of performing this task automatically in order to
protect a given application from the described attacks.

Bypass authentication Serverless functions by them-
selves lack the necessary information and context to
know about other functions and cloud services that are
part of the application they belong to. In addition to this,
applications typically comprise a plethora of ephemeral
functions that can be triggered by many event sources
and can make use of a variety of (shared) cloud ser-
vices. The previous points make it very hard for applica-
tion owners to apply proper security controls in order
to restrict access to their functions at all times. Know-
ing the difficulty of properly managing security in such
complex and dynamic environments, adversaries will try
to find ways to trigger functions (or pass malicious data

Page 9 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

to them)—exploiting both the program logic or resorting
to external invocations— while skipping authentication.
By doing this, adversaries could exfiltrate private data
or tamper with the function’s execution flow. A robust
access control mechanism is essential in the serverless
platforms to determine if a function invocation request
is legitimate and has the required permissions to access
a function or a piece of data. Currently, cloud providers
typically offer access control techniques as part of their
cloud service portfolio, with Identity and Access Manage-
ment (IAM) being the most well-known method which
in turn often incorporates traditional role-based access
control (RBAC) [39, 40] and attribute-based access con-
trol (ABAC) [41]. Moreover, several tools and services
(e.g., [42, 43]) have recently been proposed to ease and
automate the creation of credentials and identities that
help authenticate the API calls made by users or other
workloads.

Privilege misconfiguration It is widely known that the
process of granting permissions to serverless functions
is a complex task that often results in functions get-
ting more permissions than the ones they need. There
are several reasons why attacks that exploit these weak-
nesses exist (and will continue to exist at least in the near
future). First, software developers often do not have suf-
ficient knowledge to define fine-grained security controls
to limit their functions’ capabilities. Second, following
the tight deadlines to bring their applications to produc-
tion environments, software developers often do not
perform enough testing to verify the set of permissions
assigned to their functions. Finally, and most impor-
tantly, there is a lack of mechanisms to dynamically and
automatically identify and configure the minimum set of
permissions needed by applications.

De-serialization and usage of third-party librar-
ies Serverless functions are written in a number of pro-
gramming languages, some of which are scripting-based
(e.g., Python and NodeJS) that often use serialized data
types such as JSON. All these programming languages
have their own quirks which can lead to unexpected
evaluations of untrusted data. This originates not only
from the programming language itself, but from frame-
works incorporated into the application—typically, to
enable faster code development. Due to the difficulty of
protecting against deserialization vulnerabilities, it is
strongly recommended to avoid user input deserializa-
tion unless absolutely necessary. If the latter is not pos-
sible, then software developers must consider and incor-
porate robust measures that (at least) guarantee that the
data has not been tampered with (e.g., through the usage
of digital signatures).

In addition, functions often rely on many (potentially
insecure) third-party libraries to handle many critical
tasks. The problem is that, because of the complexity of
the applications, software developers are typically not
fully aware of the third-party components used and con-
sequently they do not keep them up-to-date. As a result,
functions can contain weaknesses that could allow adver-
saries to run arbitrary code, leak data, or even worse, gain
full control of the functions. To alleviate this concern,
software developers should keep good track of the third-
party libraries they use, and should apply the necessary
measures to ensure that every function builds its own
security perimeter. In this regards, it is commendable the
initiative related to the SW bill of materials initiative [44].

Infrastructure‑level attacks
In the following, we outline possible infrastructure-level
attacks within the serverless ecosystem that, to a large
extent, remain relatively unexplored. Therefore, we urge
the scientific community to investigate them before the
full adoption of serverless technology.

Side channel attacks Adversaries can attempt to exploit
the way serverless platforms are designed and imple-
mented in order to conduct new forms of side channel
attacks. For example, they could leverage weaknesses
in the execution environments where functions are run
in order to obtain host-system state information (e.g.,
power consumption or performance data) or individual
process execution information (e.g., process scheduling,
cgroups or process running status). This information can
help adversaries to uniquely identify a worker node or a
function instance, and ultimately to conduct more effec-
tive and efficient attacks. Equally, as shown by Figure 2,
the sequence of functions traversed in response to exter-
nal events triggered by users can also reveal information
to adversaries (e.g., the role of the person triggering the
request). As functions are triggered reactively in response
to an action performed by a user, adversaries could gain
insights about the users by looking at the functions’
metadata (e.g., when or how often functions are called).

More sophisticated side channels can also be devised,
based on the fact that there exist many components and
cloud services shared across users. In particular, adver-
saries are interested in any shared component subject to
a change in its state based on the processed data—since
these components could leak sensitive data about users
and functions through a side channel. Note that side
channel attacks in the context of serverless computing
have not yet been investigated by the scientific commu-
nity. Thus, an in-depth evaluation is needed to identify

Page 10 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

new serverless-specific attacks, then analyze their fea-
sibility, extent and consequences, and finally to propose
effective countermeasures in order to defend against
them.

Race conditions Serverless platforms can be vulner-
able to attacks caused by inconsistencies in any compo-
nent whose functionality is distributed across several
nodes or that contains multiple replicas. For example,
let us assume that software developers decide to mod-
ify the code of a given function while several replicas of
this function are running. In such a case, there can be a
(small) time window where the serverless platform is in
an inconsistent state where some incoming requests are
handled by an old version of the function and some oth-
ers by the new version [21]. Such inconsistencies could
be caused, for example, by cloud providers reusing execu-
tion environments with the old version of the function
for a certain period of time. Adversaries could abuse such
undesirable behavior to conduct security attacks with the
goal of accessing or modifying data that otherwise would
no longer be available to them.

Similar attacks could also be carried out when other
parameters are modified (e.g., IAM roles, memory sizes,
or environment variables) while multiple replicas of the
same function are executed. Modifying these parameters
at runtime can lead to race conditions that adversaries
can exploit to lower the overall security of the server-
less platform. While race conditions can also happen

in a microservices architecture, the smaller granular-
ity offered by serverless platforms increases the risk of
inconsistencies across function versions. Overall, we
believe that this research area deserves more attention
from the scientific community, both to understand the
security threats and to design effective countermeasures
against them.

Long-lasting attacks As explained in Section 4, tra-
ditional long-lasting attacks that target servers are not
applicable in the context of serverless computing. How-
ever, researchers have reported that it is possible for
adversaries to execute a new class of long-lasting attacks
by placing malicious code in the (writable) /tmp/ disk
space used by warm containers to store temporary infor-
mation across invocations [45, 46]. The main challenge
to perform such attacks is that, as /tmp/ is intended to
be used only for maintaining temporary state, their size
is relatively small (e.g., 512MB in Amazon Lambda). This
poses some restrictions on the type and size of the code
adversaries can place inside them. One way for adver-
saries to overcome this limitation would be to run code
that communicates with external endpoints controlled by
them. However, most serverless platforms give applica-
tion owners access to security tools that could preclude
such disallowed external communication. Despite this,
there is still the need for investigating which attacks could
be run from the /tmp/ disk space or any other directory
within a given execution environment that is kept intact
across multiple invocations of the same function. These

Fig. 2 This figure illustrates an application composed by various functions chained together. Let us assume that Function 1 is responsible for
authenticating the application’s administrators as well as end-users before their requests are passed to other functions. Imagine that the request
is passed to Function 2 and Function 3 if the request originates from administrators, while if the request comes from end-users this is handled by
Function 4 and Function 5. In such a case, the application’s control flow can easily leak the role of the person issuing the request or the times at
which the application is accessed by administrators and end-users

Page 11 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

attacks are likely to become a more important threat in
the near future as serverless platforms evolve to fit the
needs of stateful functions (e.g., [47]), since this will
require placing more storage closer to the functions. As
for countermeasures, in case the usage of warm con-
tainers is required to meet the application performance
requirements, one possible way to mitigate the exposed
issue would be for cloud providers to reduce the size of
the /tmp/ folder to the minimum extent possible and to
carefully monitor its contents after every function invo-
cation. Here the challenge is how to distinguish between
the legitimate data stored in the /tmp/ directory (the
ones that come from the application) and the malicious
code that adversaries could store therein.

Billing attacks Though serverless offers increased pro-
tection against traditional DoS/DDoS attacks, these
attacks can be engineered to lead to new, serverless-spe-
cific attacks that take advantage of the fact that applica-
tion owners are billed based on the amount of resources
their functions consume. By sending many requests to
functions, adversaries can now perform the so called
Denial-of-Wallet (DoW) attacks [25] with the purpose
of significantly increasing the cost for application own-
ers. Although some mitigating countermeasures already
exist against DoW attacks (e.g., setting an upper limit on
invocations concurrency and instances quota on function
creation or creating a billing alert to notify application
owners if they exceed a predefined spending limit), these
attacks are not easy to defend against and require addi-
tional control measures: first, to detect abnormal behav-
ior; and, later to discriminate which legitimate invoca-
tions to allow, and which ones to drop.

The uniqueness of serverless in this context, is the fact
that invocation and billing happen at a very small gran-
ularity, i.e., the function. Hence, an adversary can per-
form these attacks by invoking a function many times,
while in other auto-scaling constructions adversaries
would require the generation of a high load on a full con-
tainer or VM to succeed. As such, the consequences of
successfully launching such attacks can be more severe
when targeting serverless platforms. Moreover, given the
fact that computation can evolve only via function calls,
blocking legitimate function invocations would represent
a more serious threat than that experienced by the cited
auto-scaling twins of serverless.

Conclusions
In this paper we have shown that, on the one hand,
serverless computing provides additional security fea-
tures while, on the other hand, it also introduces unique
security threats and challenges—clearly differentiating

itself from current virtualization technologies. In par-
ticular, we have reviewed current serverless architec-
tures, categorized the current security threats, shown
actionable hints to improve the current security pos-
ture, and highlighted security research directions to
make serverless the paradigm of choice when looking
for virtualization solutions where security is at a pre-
mium. We believe that our contribution, other than
being valuable on its own, also paves the way for fur-
ther research in this domain, a challenging and relevant
one for practitioners, Industry, and Academia.

Acknowledgements
The authors would like to thank the anonymous reviewers for their comments,
which helped to improve the quality of the manuscript.

Authors’ contributions
Eduard Marin wrote this paper. Eduard Marin, Diego Perino, and Roberto di
Pietro contributed to the discussions and reviewed and edited the manu-
script. Eduard Marin, Diego Perino and Roberto di Pietro approve the final
manuscript.

Authors’ information
Eduard Marin, Dr., is a Research Scientist at Telefónica Research, Spain.
His main research interests fall in the intersection between Security and Pri-
vacy, Networks and Cloud Computing. He received his PhD degree from KU
Leuven, Belgium. After obtaining his PhD, he was a visiting researcher at the
University of Padua (Italy) and a postdoctoral researcher at the University of
Birmingham (UK). Diego Perino, Dr., is the director of Telefónica Research,
Spain. Prior to Telefónica, he worked at Bell Labs, NICTA, Orange Labs. He
received his Ph.D. in Computer Science from the Paris Diderot-Paris 7, M.S.
in Networking engineering at Politecnico di Torino and Eurecom Institute
of Sophia Antipolis. Roberto di Pietro, Prof., ACM Distinguished Scientist,
is a Full Professor of Cybersecurity at HBKU-CSE. His main research interests
include Security and Privacy for Distributed Systems, AI for cybersecurity,
Virtualization, and Applied Cryptography. In 2020 he received the Jean-
Claude Laprie Award for having significantly influenced the theory and
practice of Dependable Computing.

Funding
The research leading to these results have received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreements No 871793 (Accordion), No 101016509 (Charity), No 101070473
(FLUIDOS) and No 101070516 (Nebulous). This publication was also partially
supported by the award NPRP-S-11-0109-180242 from the QNRF-Qatar
National Research Fund, a member of The Qatar Foundation. The findings
reported herein are solely responsibility of the authors.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Telefonica Research, Barcelona, Spain. 2 Hamad Bin Khalifa University (HBKU),
College of Science and Engineering (CSE), Information and Computing Tech-
nology (ICT), Doha, Qatar.

Received: 20 July 2022 Accepted: 29 September 2022

Page 12 of 12Marin et al. Journal of Cloud Computing (2022) 11:69

References
 1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Pat-

terson D, Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: A berkeley
view of cloud computing. Tech Rep, University of California at Berkeley.
http:// berke leycl ouds. blogs pot. com/ 2009/ 02/ above- clouds- relea sed. html

 2. Lombardi F, Di Pietro R (2015) Security for Cloud Computing. Artech House,
Norwood

 3. Castro P, Ishakian V, Muthusamy V, Slominski A (2019) The Rise of Serverless
Computing. Commun ACM 62(12):44–54

 4. Jonas E, Schleier-Smith J, Sreekanti V, Tsai C, Khandelwal A, Pu Q, Shankar V,
Carreira J, Krauth K, Yadwadkar NJ, Gonzalez JE, Popa RA, Stoica I, Patterson
DA (2019) Cloud Programming Simplified: A Berkeley View on Serverless
Computing. CoRR. 1902:03383

 5. (2021) AWS Lambda. https:// aws. amazon. com/ lambda/. Accessed 21 Oct
2022

 6. (2021) Azure Serverless | Microsoft Azure. https:// azure. micro soft. com/ solut
ions/ serve rless/. Accessed 21 Oct 2022

 7. (2021) Serverless Computing Solutions—Google Cloud. https:// cloud.
google. com/ serve rless. Accessed 21 Oct 2022

 8. (2021) IBM Cloud Functions. https:// www. ibm. com/ cloud/ funct ions.
Accessed 21 Oct 2022

 9. (2021) Alibaba Cloud Function Compute. https:// www. aliba baclo ud. com/
produ cts/ funct ion- compu te. Accessed 21 Oct 2022

 10. (2021a) AWS Lambda Customer Case Studies. https:// aws. amazon. com/
lambda/ resou rces/ custo mer- case- studi es/. Accessed 21 Oct 2022

 11. (2021b) Serverless Computing Market Insights. https:// www. digit aljou rnal.
com/ pr/ serve rless- compu ting- market- insig hts- 2022- busin ess- oppor tunit
ies- curre nt- trends- and- restr aints- forec ast- 2026# ixzz7 W67yD Ni4. Accessed
21 Oct 2022

 12. Hong S, Srivastava A, Shambrook W, Dumitras T (2018) Go Serverless:
Securing Cloud via Serverless Design Patterns. In: USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud). USENIX Association, Boston

 13. (2021) OWASP Serverless Top 10. https:// owasp. org/ www- proje ct- serve
rless- top- 10/. Accessed 21 Oct 2022

 14. (2021) AWS Serverless Application Repository. https:// aws. amazon. com/ en/
serve rless/ serve rless repo/. Accessed 21 Oct 2022

 15. Combe T, Martin A, Di Pietro R (2016) To Docker or Not to Docker: A Security
Perspective. IEEE Cloud Comput 3(5):54–62

 16. Gao X, Gu Z, Li Z, Jamjoom H, Wang C (2019) Houdini’s Escape: Breaking
the Resource Rein of Linux Control Groups. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). pp 1073–1086. Association
for Computing Machinery, New York

 17. Nam J, Lee S, Seo H, Porras P, Yegneswaran V, Shin S (2020) BASTION: A Secu-
rity Enforcement Network Stack for Container Networks. In: USENIX Annual
Technical Conference (USENIX ATC). pp 81–95. USENIX Association

 18. (2021a) Ory Segal: Serverless Security // Serverless Days TLV. https:// www.
youtu be. com/ watch?v= M7wUa nfWs1 c &t= 743s. Accessed 21 Oct 2022

 19. (2021b) Event Injection: Protecting your Serverless Applications. https:// www.
jerem ydaly. com/ event- injec tion- prote cting- your- serve rless- appli catio ns/.
Accessed 21 Oct 2022

 20. Yelam A, Subbareddy S, Ganesan K, Savage S, Mirian A (2021) CoResident
Evil: Covert Communication In The Cloud With Lambdas. In: the Web
Conference (WWW). pp 1005–1016. Association for Computing Machinery,
New York

 21. Wang L, Li M, Zhang Y, Ristenpart T, Swift M (2018) Peeking behind the
Curtains of Serverless Platforms. In: USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC). pp 133–145. USENIX Association,
Boston

 22. (2022) CVE-2022-0185: Kubernetes Container Escape Using Linux Kernel
Exploit. https:// www. crowd strike. com/ blog/ cve- 2022- 0185- kuber netes-
conta iner- escape- using- linux- kernel- explo it/. Accessed Oct 21 2022

 23. (2019) Hacking serverless runtimes: Profiling AWS Lambda, Azure Functions,
And more. https:// www. black hat. com/ us- 17/ briefi ngs/ sched ule/# hacki ng-
serve rless- runti mes- profi ling- aws- lambda- azure- funct ions- and- more- 6434

 24. Xiong J, Wei M, Lu Z, Liu Y (2021) Warmonger: Inflicting Denial-of-Service via
Serverless Functions in the Cloud. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). pp 955–969. Association for Comput-
ing Machinery, New York

 25. Kelly D, Glavin FG, Barrett E (2021) Denial of wallet–Defining a looming
threat to serverless computing. Journal of Information Security and Applica-
tions (60):2214–2126

 26. (2021) Many-faced threats to Serverless security. https:// hacke rnoon. com/
many- faced- threa ts- to- serve rless- secur ity- 519e9 4d19d ba. Accessed 21 Oct
2022

 27. Liu G, Gao X, Wang H, Sun K (2022) Exploring the Unchartered Space of
Container Registry Typosquatting. In: USENIX Security Symposium (USENIX
Security). pp 35–51. USENIX Association, Boston

 28. Makrani HM, Sayadi H, Nazari N, Khasawneh KN, Sasan A, Rafatirad S,
Homayoun H (2021) Cloak & Co-locate: Adversarial Railroading of Resource
Sharing-based Attacks on the Cloud. In: International Symposium on Secure
and Private Execution Environment Design (SEED). pp 1–13

 29. Fang C, Wang H, Nazari N, Omidi B, Sasan A, Khasawneh KN, Rafatirad S,
Homayoun H (2022) Repttack: Exploiting Cloud Schedulers to Guide Co-
Location Attacks. In: Network and Distributed System Security Symposium
(NDSS)

 30. Razavi K, Gras B, Bosman E, Preneel B, Giuffrida C, Bos H (2016) Flip Feng
Shui: Hammering a Needle in the Software Stack. In: USENIX Security Sym-
posium (USENIX Security). pp 1–18. USENIX Association, Austin

 31. Kocher P, Horn J, Fogh A, Genkin D, Gruss D, Haas W, Hamburg M, Lipp M,
Mangard S, Prescher T, Schwarz M, Yarom Y (2019) Spectre Attacks: Exploit-
ing Speculative Execution. In: IEEE Symposium on Security and Privacy
(S&P). pp 1–19

 32. Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, Horn J, Mangard
S, Kocher P, Genkin D, Yarom Y, Hamburg M (2018) Meltdown: Reading
Kernel Memory from User Space. In: USENIX Security Symposium (USENIX
Security). pp 973–990. USENIX Association, Baltimore

 33. Datta P, Kumar P, Morris T, Grace M, Rahmati A, Bates A (2020) Valve: Securing
Function Workflows on Serverless Computing Platforms. In: The Web Con-
ference (WWW). pp 939–950. Association for Computing Machinery, New
York

 34. Sankaran A, Datta P, Bates A (2020) Workflow Integration Alleviates Identity
and Access Management in Serverless Computing. In: Annual Computer
Security Applications Conference (ACSAC). pp 496–509. Association for
Computing Machinery, New York

 35. Anjali, Caraza-Harter T, Swift MM (2020) Blending Containers and Virtual
Machines: A Study of Firecracker and GVisor. In: ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE). pp 101–113.
Association for Computing Machinery, New York

 36. (2021) Hyper-V Technology Overview. https:// docs. micro soft. com/ en- us/
windo ws- server/ virtu aliza tion/ hyper-v/ hyper-v- techn ology- overv iew.
Accessed 21 Oct 2022

 37. (2021) Nabla containers: a new approach to container isolation. https://
nabla- conta iners. github. io/. Accessed 21 Oct 2022

 38. (2021) Kata containers. https:// katac ontai ners. io/. Accessed 21 Oct 2022
 39. Ferraiolo DF, Kuhn DR (2009) Role-Based Access Controls. https:// doi. org/ 10.

48550/ ARXIV. 0903. 2171
 40. Colantonio A, Di Pietro R, Ocello A (2012) Role Mining in Business: Taming

Role-Based Access Control Administration. World Scientific, Singapore
 41. Hu VC, Kuhn DR, Ferraiolo DF, Voas J (2015) Attribute-Based Access Control.

Computer 48(2):85–88. https:// doi. org/ 10. 1109/ MC. 2015. 33
 42. (2021) Spiffe: Secure Production Identity Framework for Everyone. https://

spiffe. io/. Accessed 21 Oct 2022
 43. (2021) Corsha: API Identity & Access Management. https:// corsha. com/.

Accessed 21 Oct 2022
 44. (2021) The Minimum Elements For a Software Bill of Materials (SBOM).

https:// www. ntia. doc. gov/ report/ 2021/ minim um- eleme nts- softw are-
bill- mater ials- sbom. Accessed 21 Oct 2022

 45. (2021) Gone in 60 Milliseconds: Intrusion and Exfiltration in Serverless
Architectures. https:// media. ccc. de/v/ 33c3- 7865- gone_ in_ 60_ milli secon ds.
Accessed 21 Oct 2022

 46. (2021) How AWS Lambda reuses containers (and how it affects you). https://
pfist erer. dev/ posts/ aws- lambda- conta iner- reuse. Accessed 21 Oct 2022

 47. Savi M, Banfi A, Tundo A, Ciavotta M (2022) Serverless Computing for NFV:
Is it Worth it? A Performance Comparison Analysis. In: IEEE International
Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops). pp 680–685

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
https://aws.amazon.com/lambda/
https://azure.microsoft.com/solutions/serverless/
https://azure.microsoft.com/solutions/serverless/
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://www.ibm.com/cloud/functions
https://www.alibabacloud.com/products/function-compute
https://www.alibabacloud.com/products/function-compute
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://www.digitaljournal.com/pr/serverless-computing-market-insights-2022-business-opportunities-current-trends-and-restraints-forecast-2026#ixzz7W67yDNi4
https://www.digitaljournal.com/pr/serverless-computing-market-insights-2022-business-opportunities-current-trends-and-restraints-forecast-2026#ixzz7W67yDNi4
https://www.digitaljournal.com/pr/serverless-computing-market-insights-2022-business-opportunities-current-trends-and-restraints-forecast-2026#ixzz7W67yDNi4
https://owasp.org/www-project-serverless-top-10/
https://owasp.org/www-project-serverless-top-10/
https://aws.amazon.com/en/serverless/serverlessrepo/
https://aws.amazon.com/en/serverless/serverlessrepo/
https://www.youtube.com/watch?v=M7wUanfWs1c%20&t=743s
https://www.youtube.com/watch?v=M7wUanfWs1c%20&t=743s
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.crowdstrike.com/blog/cve-2022-0185-kubernetes-container-escape-using-linux-kernel-exploit/
https://www.crowdstrike.com/blog/cve-2022-0185-kubernetes-container-escape-using-linux-kernel-exploit/
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://nabla-containers.github.io/
https://nabla-containers.github.io/
https://katacontainers.io/
https://doi.org/10.48550/ARXIV.0903.2171
https://doi.org/10.48550/ARXIV.0903.2171
https://doi.org/10.1109/MC.2015.33
https://spiffe.io/
https://spiffe.io/
https://corsha.com/
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://pfisterer.dev/posts/aws-lambda-container-reuse
https://pfisterer.dev/posts/aws-lambda-container-reuse

	Serverless computing: a security perspective
	Abstract
	Introduction
	Background
	Serverless computing
	Serverless ecosystem
	Existing infrastructure-level security controls

	Threat Model
	Serverless as a Security Enabler
	Increased difficulty in performing attacks
	Less security responsibilities for software developers
	Resistance to Denial-of-Service attacks

	Serverless as a Security Risk
	Larger attack surface
	Proprietary cloud provider infrastructures
	Security vs. performance vs. cost.

	Security Attacks and Countermeasures
	Application-level attacks
	Infrastructure-level attacks

	Conclusions
	Acknowledgements
	References

