
Grant Agreement No.: 101016509
Research and Innovation action
Call Topic: ICT-40-2020: Cloud Computing

Cloud for Holography and Cross Reality

D3.1: Energy, data and computational-efficient mechanisms
supporting dynamically adaptive and network-aware services

(preliminary)

Version: v1.0

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 31/12/2022

Submission date 22/12/2022

Lead editor Massimiliano Corsini (CNR)

Authors Antonios Makris (HUA), Konstantinos Tserpes (HUA), Theodoros
Theodoropoulos (HUA), Michael McElligott (CAI), Tom Loven (PLEXUS),
Laura Sande (PLEXUS), Yago Gonzalez Rozas (PLEXUS), Antonis Protopsaltis
(ORAMA), Manos Kamarianakis (ORAMA), Enrico Zschau (SRT), Federico
Ponchio (CNR), Pedro Sá (ONE), Joao Rodrigues (DOTES)

Reviewers Luis Rosa, Patrizio Dazzi

Work package, Task WP3

Keywords XR enablers, storage system, software dynamic adaptation, rendering
algorithms, data compression

Abstract

WP3 is the work package devoted to the research and development of strategies, mechanisms, and
algorithms, for the efficient exploitation of available network and computational resources to enable
sophisticated XR applications. Several aspects are investigated, like the intelligent management of data
storage and access, and innovative strategies to adapt the Quality of Experience of the running
application according to the available resources. Regarding the advancement of XR technologies, we
investigated techniques to obtain more complex realistic VR simulation, technical solutions for
rendering adaptation, novel algorithms for 3D point cloud compression and for the next-gen multi-
user AR gaming experience, and we proposed solutions for the editing and streaming of immersive 360
video.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 2 of 91

Document revision history

Version Date Description of change List of contributor(s)

v0.1 04/04/22 Initial skeleton and first
contributions

Massimiliano Corsini (CNR), Antonios Makris
(HUA), Konstantinos Tserpes (HUA),
Theodoros Theodoropoulos (HUA), Michael
McElligott (CAI), Tom Loven (PLEXUS), Laura
Sande (PLEXUS), Yago Gonzalez Rozas
(PLEXUS), Antonis Protopsaltis (ORAMA),
Manos Kamarianakis (ORAMA), Enrico
Zschau (SRT), Federico Ponchio (CNR), Pedro
Sá (ONE)

v0.2 20/06/22 Version for the internal
reviewers

Luis Rosa (ONE), Patrizio Dazzi (CNR)

v0.3 29/06/22 Editorial check, sent to PO Anja Köhler, Uwe Herzog (EURES)

v0.4 15/10/22 Updating of the draft Massimiliano Corsini (CNR), Antonios Makris
(HUA), Konstantinos Tserpes (HUA),
Theodoros Theodoropoulos (HUA), Michael
McElligott (CAI), Tom Loven (PLEXUS), Laura
Sande (PLEXUS), Yago Gonzalez Rozas
(PLEXUS), Antonis Protopsaltis (ORAMA),
Manos Kamarianakis (ORAMA), Enrico
Zschau (SRT), Federico Ponchio (CNR), Pedro
Sá (ONE), Joao Rodrigues (DOTES)

v0.5 02/12/22 Version for the internal
reviewers

Massimiliano Corsini (CNR)

V0.6 12/12/22 Version for the PO Luis Rosa (ONE), Massimiliano Corsini (CNR)

V0.9 14/12/22 Final editorial check Uwe Herzog (EURES)

v1.0 22/12/22 Adding heading 5.1, re-
design of section 2 tables,
refinement in sect. 5.4

Michael McElligott (CAI), Antonis
Protopsaltis (ORAMA), Uwe Herzog (EURES)

Disclaimer

This report contains material which is the copyright of certain CHARITY Consortium Parties and may
not be reproduced or copied without permission.

All CHARITY Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the CHARITY Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

 CC BY-NC-ND 3.0 License – 2021-2023 CHARITY Consortium Parties

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 3 of 91

Acknowledgement

The research conducted by CHARITY receives funding from the European Commission H2020
programme under Grant Agreement No 101016509. The European Commission has no responsibility
for the content of this document.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 4 of 91

Executive Summary

The research and development activities in the WP3 will drive the advancement of complex and highly
demanding (in terms of computation and/or bandwidth resources) XR applications. The systems and
the algorithms delivered by WP3 will be integrated (WP4) into the CHARITY platform and in some of
the Use Cases (UCs) of the CHARITY project. These ad-hoc technologies and novel algorithms regard
different aspects of advanced XR applications.

A flexible monitoring framework which fills the needs of the different UCs of CHARITY is under
development. This monitoring framework is based on the open-source Prometheus technology.
According to the metrics identified, different types of exporters are under development to enable the
different UCs to monitor their metrics of interest. The monitoring framework interacts with the
orchestration system of the CHARITY platform.

AI-based technologies are under development to be included in the CHARITY Edge Storage (CHES). The
CHES is a data management system for the intelligent management of data storage and data access.
This system takes into account the high degree of heterogeneity that characterises the computational
resources considered in the CHARITY project and it is lightweight so that it can also be used on edge
devices with limited capabilities such as a Raspberry Pi. Preliminary experimental results, in terms of
achieving the planned KPI, are really encouraging. CHES will be released as an open-source software
under GPL 3 license.

XR applications are demanding in terms of computational and network resources, and the
environmental circumstances may become sub-optimal during their running, for example, due to a
reduction of bandwidth. In many of these cases, it is convenient to modify the behaviour of the running
application so that the application itself adapts to the available resources instead of re-routing or
deploying it. In CHARITY, a variant of the MAPE-K Loop [7] approach, based on micro-services, is
proposed to perform an adaptation of XR applications at runtime. This novel solution has been
carefully designed and some preliminary studies related to the flight simulator of the Collins Aerospace
(UC3-2 Manned-Unmanned Operations Trainer Application) have been conducted.

Virtual Reality applications often require high realism in rendering and physical simulation. The UC2-1
VR Medical Training Application of CHARITY is one of these types of virtual reality applications. This VR
UC is currently being optimized by exploiting multi-threading to make the rendering and the physics
part even more efficient. Preliminary results are encouraging, for what concerns the physics
simulation, while multi-threaded rendering in Unity has shown some limits of applicability.

The immersive applications, to reach high-quality levels of experience, require ultra-low latency and
large bandwidth resources. To improve immersiveness of applications, we begin to integrate into some
selected UCs, an adaptive rendering algorithm to reduce the rendering computation, and hence, the
overall latency of the application.

Another important aspect of immersive applications is 360-degree video. The UC2-2 VR Tour Creator
Application of CHARITY regards the advancement of a platform for the creation of virtual tours based
on 360° video. In the next we describe the new features under and technological advancement under
development of the Cyango Cloud Studio, that is the platform of UC2-2.

Specific data services to satisfy the needs of XR applications like the UC1-3 Holo Assistant and the UC3-
1 Collaborative AR Gaming are also under development. Respectively, a point cloud codec allows the
transmission from the cloud to the edge (the holographic display) of a huge amount of 3D points, and
a geometry processing algorithm guarantees the continuous update between the real and the virtual
gaming environment (called Mesh Merger). The Mesh Merger is in the first stage of development,
while a first working prototype of the PC encoder/decoder will be available in short time.

In this deliverable, the research and the technical work related of the activities mentioned above is
described and some experimental results are reported.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 5 of 91

Table of Contents

Executive Summary .. 4

Table of Contents ... 5

List of Figures ... 8

List of Tables .. 10

Abbreviations ... 11

1 Introduction ... 12

1.1 Activities in a nutshell .. 12

1.2 Relationships between the CHARITY Framework and the WP3 Tasks 13

2 Monitoring ... 17

2.1 Monitoring approach ... 17

2.1.1 Monitoring agent ... 17

2.1.2 Monitoring architecture .. 17

2.2 UC1-1 - UC1-2: HOLO 3D - Holographic concert and holographic meeting 20

2.3 UC1-3: SRT - Holographic assistant .. 20

2.4 UC2-1: ORAMA - Medical training ... 21

2.5 UC2-2: DOTES - Virtual tours ... 21

2.6 UC3-1: ORBK - Mixed reality .. 22

2.7 UC3-2: Collins Aerospace (CAI) - Flight simulator .. 22

2.8 Relationship with the CHARITY Architecture ... 23

3 CHARITY Edge Storage (CHES) ... 26

3.1 Component descriptions.. 26

3.1.1 Kubernetes Dataset Lifecycle Framework ... 27

3.2 Package information .. 29

3.2.1 CHES Storage ... 29

3.2.2 CHES Localized Docker Registry ... 31

3.2.3 Semi-automated Deployment and off-loading .. 32

3.3 User Manual... 32

3.3.1 CHES Storage ... 32

3.3.2 CHES Registry ... 33

3.4 Licensing .. 34

3.5 Results obtained in relation to the objectives (KPIs) ... 34

3.6 Relation to research questions .. 35

3.7 Evaluation of CHES ... 36

4 Resource-aware Adaptation Mechanisms ... 39

4.1 Dynamic Software Adaptation ... 39

4.1.1 A structure for adaptation ... 40

4.1.2 Context Monitoring & Analysis .. 40

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 6 of 91

4.1.3 Planning ... 41

4.1.4 Execution ... 41

4.2 Challenges .. 41

4.2.1 Avoid design time intrusions ... 41

4.2.2 Prevent platform instability ... 41

4.2.3 Accommodate user-level adaptation .. 42

4.2.4 Transparency & Tractability... 42

4.3 Adaptation Infrastructure .. 42

4.3.1 Configuration Containment ... 43

4.3.2 Service Routing .. 44

4.3.3 Application Quality Modes .. 45

4.3.4 Monitoring & Analysis ... 47

4.3.5 Planning & Execution ... 49

4.4 Early Investigative Work .. 51

4.4.1 Service Mesh Routing .. 51

4.4.2 Adaptation Tactics ... 58

5 Enabling XR technologies under development ... 60

5.1 Migrating from on-premise to on-cloud .. 60

5.1.1 The Latency Challenge ... 61

5.1.2 Tackling XR Latency ... 62

5.1.3 Towards Cloud Native .. 63

5.2 Dissection of the Unity3D Physics engine .. 64

5.2.1 Dissection of Physics Simulation Engine .. 64

5.2.2 Methodology – Notation ... 65

5.2.3 Methodology - Overview ... 65

5.2.4 Implementation ... 66

5.2.5 Lab Testing ... 67

5.2.5.1 Initial testing .. 67

5.2.5.2 Synthetic testing .. 68

5.2.5.3 In-Vivo testing .. 69

5.2.6 QoE Subjective remarks ... 69

5.2.7 How Compression affects performance .. 69

5.2.8 Conclusions - Future Work .. 70

5.3 Investigating Multi-threaded rendering in the Unity3D game engine 70

5.3.1 Single-threaded Rendering .. 71

5.3.2 Unity3D Multi-threading Built-in System .. 71

5.3.3 Graphics Jobs System .. 71

5.3.4 Vulkan Graphics API ... 72

5.3.5 Conclusions .. 72

5.4 Adaptive rendering algorithms for low latency immersive applications 73

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 7 of 91

5.5 Point Cloud Encoding / Decoding .. 74

5.5.1 UC1-3 Holo Assistant ... 74

5.5.2 First point cloud encoder/decoder (PC E/D) design considerations 75

5.5.3 PC generation module and first prototype of the algorithm .. 78

5.5.4 Point cloud compression – first evaluations ... 80

5.5.5 Conclusions .. 82

5.6 Video streaming and platform development .. 82

5.7 Mesh Merger ... 86

6 Conclusions .. 88

References ... 89

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 8 of 91

List of Figures

Figure 1: CHARITY Architecture and project WPs/Tasks mapping. ... 14

Figure 2: Monitoring Architecture defined in D2.1 ... 18

Figure 3: Questionnaire for Collins Aerospace .. 19

Figure 4: An example of mounting a PVC created by the DLF integration .. 28

Figure 5: Dataset Lifecycle Framework (DLF) .. 29

Figure 6: CHES Localized Docker Registry ... 31

Figure 7: The MinIO web-based interface ... 32

Figure 8: An example connection with the command line MinIO client .. 33

Figure 9: Kubernetes Dashboard ... 33

Figure 10: Example of the catalog API for CHES LDR hosted in a local K3s cluster 33

Figure 11: Percentage change of various resource utilization metric .. 36

Figure 12: Read, Write and Delete operation response times in milliseconds for the local CHES
deployment ... 37

Figure 13: Read, Write and Delete operation response times in milliseconds for the remote CHES
deployment ... 37

Figure 14: Comparison of response times for various operations for the remote and local CHES
deployments .. 38

Figure 15: MAPE-K Loop [7] .. 40

Figure 16: Service Editions used to satisfy different environment conditions 42

Figure 17: MAPEK-K look modified to include a service mesh for monitoring and execution 43

Figure 18: Run differently configured copies of a single application simultaneously 44

Figure 19: The Sidecar Pattern [22] and an architectural overview of its use in the Service Mesh [5] 45

Figure 20: Simplified Application with Microservice Architecture ... 45

Figure 21: XR Application Quality of Experience is often multi-faceted ... 45

Figure 22: Logical QMode Switch and how it could be employed to divert traffic between different
service configurations ... 46

Figure 23: Monitor for conditions that warrant changes to QMode .. 47

Figure 24: Monitoring High level indicators reduces decision complexity ... 48

Figure 25: Monitoring the manifested user experience is more tractable and efficient 48

Figure 26: Monitoring high level metrics while supporting interrogation of low-level for adaptation 49

Figure 27: QMode Routing .. 50

Figure 28: Application about to switch over to application variation that consumes less resources .. 50

Figure 29: Kubernetes Pods manage service variations and are threaded together through tagging and
sidecar proxies .. 51

Figure 30: QMode synchronization and propagation .. 51

Figure 31: Header-based routing .. 53

Figure 32: Scenario implemented with Istio header tagging .. 53

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 9 of 91

Figure 33: Configuration of routing logic .. 54

Figure 34: Communication with the httpbin service - high version of the app 54

Figure 35: Communication with the httpbin service - low version of the app 55

Figure 36: Leveraging Envoy filters and Load Balancing functionality .. 55

Figure 37: Delegating decisions from proxies to external service .. 57

Figure 38: Configurability options to deliver adaptability tactics ... 59

Figure 39: Some deployment models for the existing flight simulator ... 60

Figure 40: Existing deployment options revolve around a monolithic approach 60

Figure 41: Motion To Photon budgets become even more demanding with XR and the cloud 61

Figure 42: The latency budget available depends on the activity ... 62

Figure 43: Movement of an aircraft can be predicted to enable pre-rendering if scenery ahead of time
 ... 63

Figure 44: Flight Simulator redesigned as cloud native .. 64

Figure 45: Unity3D multi-threading Built-in System ... 71

Figure 46: Graphics Jobs System ... 72

Figure 47: The Holo Assistant User Case ... 74

Figure 48: Relationship between the eye boxes and visibility of the 3D points 76

Figure 49: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1). .. 77

Figure 50: Example of three slightly different views (depth + RGB data). These views can be merged
together to form the point cloud .. 78

Figure 51: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views 79

Figure 52: Depth map can be used to find the hidden points using projection between different views.
In green and red the points revealed by this operation. .. 79

Figure 53: (Left) Example of a 3D Point Cloud visualization; (Right) Rendered final result after
reconstructing into an image .. 80

Figure 54: New design of Cloud Studio (screenshot 1) ... 82

Figure 55: New design of Cloud Studio (screenshot 2) ... 83

Figure 56: Video editor tool .. 83

Figure 57: Camera end network settings .. 84

Figure 58: End user network settings .. 84

Figure 59: Screenshot of the livestream test .. 85

Figure 60: Environment scanning using RGB method on Android device .. 86

Figure 61: Environment scanning using LiDAR with instant mesh collider building 87

Figure 62: Merging mesh colliders .. 87

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 10 of 91

List of Tables

Table 1: CHARITY Component List ... 15

Table 2 CHARITY proposed mechanisms and algorithms ... 16

Table 3: Monitoring agent communications ... 17

Table 4: Metric definition .. 18

Table 5: UC1-1 and UC1-2 - elements and metrics ... 20

Table 6: UC1-3 - elements and metrics ... 21

Table 7: UC2-1 - elements and metrics ... 21

Table 8: UC2-2 - elements and metrics ... 22

Table 9: UC3-1 - elements and metrics ... 22

Table 10: UC3-2 - elements and metrics ... 23

Table 11: Architecture - elements and metrics monitoring and reaction plane 24

Table 12: Architecture - elements and metrics other planes ... 25

Table 13: List of package files for Edge storage component... 30

Table 14: List of files included in the Kubernetes Dashboard ... 30

Table 15: List of files included in the CHES Registry repository .. 31

Table 16: Configuration changes mapping to QMode targets .. 51

Table 17: Challenges presented by the traditional deployment model ... 60

Table 18: Target benefits from redesign ... 61

Table 19: Testing scenario – results .. 67

Table 20: QoE vs Packet loss ... 68

Table 21: QoE vs Latency ... 69

Table 22: UDP connection results ... 69

Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows 72

Table 24: Evaluation geometry compression algorithm ... 80

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 11 of 91

Abbreviations

AR Augmented Reality

CCU Concurrent Users

CHES CHARITY Edge Storage

COS Container Orchestration Information

CPU Central Processing Unit

CRD Custom Resource Definition

CSI Container Storage Information

DLF (Kubernetes) Dynamic Lifecycle Framework

DLSP Dynamic Software Product Line

DoW Description of Work

GPU Graphics Processing Unit

HMD Head Mounted Display

ISP Internet Service Provider

JSON JavaScript Object Notation

KPI Key Performance Indicator

PC Point Cloud

PVC Persistent Volume Claim

QoE Quality of Experience

QoS Quality of Service

SPLE Software Production Line Engineering

TCP Transmission Control Protocol

WP Work Package

UC Use Case

UDP User Datagram Protocol

VM Virtual Machine

VR Virtual Reality

XR Extended Reality

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 12 of 91

1 Introduction

WP3 is devoted to the development of strategies, mechanisms, and algorithms that support both parts
of the CHARITY Framework (described in the Deliverable D1.3 and D4.1) and the Use Cases (UCs)
(described in D1.2 and D1.3). The UCs support is provided by developing specific data services that are
used by some of the XR applications shown in the ambit of the CHARITY project. Even if these data
services are targeted to the use cases of CHARITY, it is envisioned by the partners of the consortium
that such services can be used/adopted by other XR applications with similar needs, beyond the ones
involved in the project itself. For example, the 3D point cloud encoder/decoder can be used by any XR
application which needs to transfer a huge amount of 3D data points.

The R&D work conducted is presented in the following way: first, a brief introduction of the different
activities is given, together with their mapping with the Tasks of the WP3. The relationships between
the activities conducted and the rest of the project (other WPs/tasks) are also described. After this
introduction, the R&D activities are described in detail in the subsequent sections. The activities
description is organized by topic and does not follow the task subdivision.

1.1 Activities in a nutshell

The activities described in the next sections are:

• Monitoring framework

• CHARITY Edge Storage (CHES)

• Resource-aware Adaptation Mechanisms

• Transforming the flight simulator UC to a cloud-native XR application

• Rendering and physics simulation optimization for realistic VR applications

• Adaptive rendering for high QoE

• Point Cloud Encoding/Decoding

• Virtual tours through 360 video streaming platform

• Mesh Merger

The monitoring of the available network and computational resources plays a fundamental role for
their assignment according to specific requests, i.e. for the orchestration, and for the applications
performance management. Regarding performance, sometime, the applications should adapt their
behaviour during their execution to guarantee a target QoE or reduce it in case of loss of resources.
The monitoring is based on the open-source Prometheus framework. Such technology is configured
and integrated to satisfy the CHARITY requirements. The monitoring activity is conducted in the ambit
of the Task 3.1, the task committed to the efficient exploitation of computing resources, and in the
ambit of the Task 3.3, that is about the dynamic adaptation mechanisms of the applications. The
approach followed for monitoring and the architecture of the monitoring system is detailed in Section
2.

The CHARITY Edge Storage (CHES) is a solution for the optimized edge storage services to the CHARITY
framework and its hosted applications. The goals of the CHES are ambitious; it should work on
hardware with limited resources (e.g. a Raspberry Pi), and, at the same time, should provide reliable,
robust, and fast access to the information. It is based on Lightweight Kubernetes (K3s), MinIO and
Prometheus technologies. The CHES is developed in the ambit of the Task 3.2. The current status of
the development is detailed in Section 3.

The Resource-aware Adaptation Mechanisms are designed following the MAPE K-Loop [7] approach.
It consists in adapting the running applications according to the available resources by acting on
applications’ keypoints (e.g. changing the frame rate, changing the resolution). Such adaptation can be

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 13 of 91

achieved by dynamically modifying the configuration of the application. In CHARITY, a variant of the
standard MAPE K-Loop approach is proposed; a Mesh Service is used for the re-routing of micro-
services to perform the application adaptation. This idea is explained in Section 4. This is the main
activity of Task 3.3.

In CHARITY, we are also modifying the architecture of some UCs such that these XR applications
become cloud-native. The case of UC3-1 Manned-unmanned Operations Training Application is
particularly complex and requires a lot of effort. Such technical effort has been described in Section
5.1.

Many VR applications require both high-quality rendering and accurate physical simulation to provide
a realistic virtual environment. One of the UC of CHARITY, UC2-1, regards VR simulation for medical
training. The idea is to improve the performance of this VR medical simulation platform by employing
multi-threading to speed up rendering and physics simulation (as detailed in Sections 5.2 and 5.3). The
multi-threading exploitation of rendering and physics for the realistic simulation of virtual
environments is part of the activities for the efficient exploitation of computational resources (Task
3.1).

VR immersive applications, to be comfortable, satisfying, and convincing, require low latency and high
bandwidth. In CHARITY, we aim to integrate in two UCs, the UC2-1 VR Medical Training Simulator and
the UC3-1 Manned-unmanned Operations Training Application, an adaptive rendering algorithm to
reduce the computational burden and, consequently, the motion-to-photon latency. This activity is
described in Section 5.4 .

The Point Cloud Encoder/Decoder is the main component of the UC1-3 Holo Assistant. The Holo
Assistant must efficiently transmit a huge amount of 3D data from the cloud to the edge (the
holographic display). This UC is described in detail in D1.2. The current status of the development of
this innovative PC encoder/decoder is given in Section 5.5. This activity is conducted in the ambit of
the Task 3.4, devoted to the development of an adaptive rendering algorithm and data
compression/decompression for high demanding rendering applications.

Another activity of the Task 3.4 is the development of a virtual tour platform (UC2-2 VR Tour Creator
Application) to create interactive VR experiences. This platform, called Cyango2, supports 360 videos,
panoramas, 3D models, standard images and videos and basic 3D meshes. The progress of the Cyango
platform is described in Section 5.4.

The Mesh Merger is a data service built on a geometry processing algorithm which runs on the server
to enable the UC3-1 Collaborative Game. This algorithm integrates the different pieces of geometry of
the environment so that the game players can interact with a virtual environment that is continuously
updated with the real one. For example, if a chair inside a room is moved during the game, and one
gamer acquires this change through her smartphone, the Mesh Merger integrates this environment
change in the virtual environment. The Mesh Merger data service is described in section 5.5. This
activity is also conducted in the context of Task 3.4.

1.2 Relationships between the CHARITY Framework and the WP3 Tasks

An overview of the CHARITY architecture with the WPs / Tasks is given in Figure 1. It is composed of
three planes: i) the Domain Specific XR Service Monitoring and Reaction Plane, ii) the XR Service E2E
Conducting Plane, and the iii) XR Service Deployment Plane.

2 https://www.cyango.com

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 14 of 91

Figure 1: CHARITY Architecture and project WPs/Tasks mapping.

The XR Service Deployment Plane consists of the infrastructure where the XR services run. It thus hosts
the different Virtual Network Functions (VNFs) that compose the different XR services. The main
responsibility of this plane is to manage the computational, network, and storage resources of the
infrastructure. Two of the main components of the XR Service Deployment Plane are the XR Device
Controller and the XR Service Enabler Controller. The XR Device Controller is in charge to control the
XR devices. This allows to separate the data plane from the control plane. Similarly, the XR Service
Enabler Controller is in charge of control specific XR services instead of devices. The XR Device
Controller and the XR Service Enabler Controller are developed as part of the research activities of the
WP3.

The Domain-specific Monitoring and Reaction Plane is responsible for monitoring the service inside a
technological or administrative domain. It keeps track of the resource usage and of the XR services
running in the domain, it makes decisions according to the monitored data, and carried out the
actuation which are specific to each running XR service, without resorting to the E2E conducting plane.

The XR Service E2E Conducting Plane is responsible for creating the different sub-slices inside each
domain and for monitoring the E2E KPIs of the XR services. It is also responsible for the lifecycle
management of the XR services, and it can shift services between the different domains when
necessary.

A detailed description of the different components of the CHARITY architecture can be found in the
Deliverable D1.3.

The WP3 tasks are connected to the CHARITY architecture as described in the following (see Figure 1,
Table 1 and Table 2):

• Task 3.1 Efficient exploitation of CPUs, GPUs and FPGAs on edge devices. This task is focused
on providing efficient solutions for exploiting computational resources to support the project
needs. The main activities are related to the monitoring and the resource indexing, as well as
technological and algorithmic solutions for enabling the exploitation of the different and
heterogeneous computational resources belonging to CHARITY. The monitoring framework is
strictly connected with the Task 2.1 and 2.2 and also with the Task 3.3.

• Task 3.2 Efficient storage and caching for AR, VR and Holographic applications. In the ambit
of this task several components for the realization of a distributed edge storage framework
spread across heterogeneous edge and cloud nodes, with intelligent data management, high

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 15 of 91

quality performance (QoE), and high-security levels are under development. These
components, parts of the XR Service Deployment Plane, are: the CHarity Edge Storage (CHES)
which is a distributed hybrid storage component and the CHES Registry component that
realizes a localized Docker registry in order to support the faster application deploying and
limit the network flooding caused by large image downloads during deployment. In addition,
two mechanisms will be investigated, the chaRity OnLine prOactive cachIng (ROLOI)
mechanism which is an online proactive caching scheme based on deep neural network
models, and the PRoActive ComponenT Image plaCement in edge computing Environments
(PRACTICE) which ensures that application images are delivered within a given amount of time
to any resource composing the federation of edge devices.

• Task 3.3 Network and infrastructure awareness for efficient exploitation of resources: is to
explore the Dynamic Software Production Line (DSPL) paradigm to adapt XR services
dynamically and automatically to network and environment changes. Task 3.3 will also design
and develop specific Monitoring, Analytics, Decision and Actuation Engines for both domain
and cross-domain levels. This work is related to the realization of the XR Service Specific
Analytics Engine, the XR Service Specific Decision Engine, and the XR Service Specific Actuation
Engine components, which are parts of the Domain-specific Monitoring and Reaction Plane as
well as of the XR Service E2E Conducting Plane.

• Task 3.4 Adaptive rendering and contextualized data compression / decompression: The
R&D activities conducted in this task are related to the development of the algorithms that will
integrated in data services for XR applications such as the Point Cloud Encoder/Decoder (PC
E/D), used by the UC 1-3 Holo Assistant, or the Mesh Merger, developed to support the UC3-
1 Collaborative Gaming.

To make this document self-containing and more readable, we report below two tables adapted from
D4.1. Table 1 contains the name of the component of the CHARITY Framework together with the name
of the tasks related to its development. and Table 2, which contains the name of the
algorithms/mechanisms that is at the base of some specific plane/component, and the task within it is
studied and developed.

Table 1: CHARITY Component List

Component Name Architectural Layer Tasks

Monitoring Agents Monitoring & Reaction Plane T3.1, T3.3

XR Service Specific Analytics Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3

XR Service Specific Decision Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3

XR Service Specific Actuation Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3

Running XR Services Repository Monitoring & Reaction Plane T2.1, WP3, WP4

Plane Services Registry & Discovery Monitoring & Reaction Plane T2.1, WP3, WP4

E2E Service Specific DE/AE/ACT XR Service E2E Conducting Plane T2.1, T2.2, T3.3

XR Service Enabler Repository XR Service E2E Conducting Plane T2.4, WP3

Running XR Services Repository XR Service E2E Conducting Plane T2.1, WP3, WP4

Resource Planning XR Service E2E Conducting Plane T3.1

Resource Indexing XR Service E2E Conducting Plane T3.1

XR Device Controller XR Service Deployment Plane WP3

XR Service Enabler Controller XR Service Deployment Plane WP3

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 16 of 91

Table 2: CHARITY proposed mechanisms and algorithms

Component Name Component Description Architectural Layer Tasks

Prometheus and
Monitoring agents

Resource monitoring tool
Agent to facilitate VNF monitoring

Monitoring Agents /
Monitoring & Reaction
Plane

T2.2,
T3.1,
T3.3

Adaptative Network
Traffic Mechanism

Mechanism to dynamically route
network traffic accordingly to
infrastructure conditions

DE/AE/ACT

Monitoring & Reaction
Plane / E2E Conducting
Plane

T3.3

XR Service Enabler
Repository

Repositories for container images,
VM images and metadata

XR Service Enabler
Repository / XR Service
E2E Conducting Plane

T2.4,
WP3

CHES (CHARITY Edge
Storage)

A distributed hybrid storage
component spread across
heterogeneous edge and cloud nodes
with intelligent decisions on data
placement, data caching and
considerations on performance (QoE)
and security

XR Service Deployment
Plane

T3.2

ROLOI (chaRity
OnLine prOactive
cachIng)

Online proactive caching scheme
based on deep neural network
models to predict time-series content
requests and update edge caching
accordingly

XR Service Deployment
Plane

T3.2

PRACTICE (PRoActive
ComponenT Image
plaCement in edge
computing
Environments)

A component that ensures that
application images are delivered
within a given amount of time to any
resource composing the federation of
edge devices

XR Service Deployment
Plane

T3.2

3D Point cloud
encoder/decoder

Data service component to
compress/decompress point cloud
for efficient transmission

XR Service Deployment
Plane

T3.4

Decentralised
storage / network
performance

Measuring the performance of DHT-
based decentralised storage
platforms such as IPFS and pub-sub
based federation networks.

XR Service Deployment
Plane

T3.2

For the complete list of components and algorithms/mechanisms, refer to the Appendix A, B, and C of
the Deliverable D4.1. The corresponding tables of D4.1 report also provide additional information for
each component/algorithm, like the name of the partners involved in the development.

Note that Table 2 reports the algorithms/mechanisms that can be mapped on the CHARITY
architecture. The Mesh Merger, depending on its final implementation, could be integrated into the
game server of the UC3-1 or become an additional component.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 17 of 91

2 Monitoring

2.1 Monitoring approach

2.1.1 Monitoring agent

Prometheus, Grafana and Thanos are the open-source tools at the base of the CHARITY’s monitoring
platform: monitoring, alerting, data storage and visualization. However, a monitoring element is
needed to achieve a multi-cloud platform focused on prevention and reactivity. This monitoring agent
converts individual static configurations into a dynamic platform and needs to be reporting quickly to
the XR Data Collector and communicating with the orchestrator. The following table provides an
overview of these communications.

Table 3: Monitoring agent communications

Source Destiny Description

Orchestrator Monitoring agent Change configuration, alerting

Monitoring agent Prometheus server Change configuration, alerting

Monitoring agent Thanos Change configuration

Orchestrator Monitoring agent Monitor new element

Monitoring agent Prometheus server Monitor new element

Monitoring agent Thanos Collect data from new element

Orchestrator Monitoring agent Stop monitoring an element but
don't delete Thanos stored data

Monitoring agent Prometheus server Stop monitoring an element

Orchestrator Monitoring agent Stop monitoring an element and
delete Thanos stored data

Monitoring agent Thanos Stop monitoring an element

XR Data Collector Monitoring agent Request Data

Monitoring agent XR Data Collector Send data

The monitoring agent communicates through HTTP to receive configuration update orders based on
service migration and to send stored performance data to the Reaction Plane to predict the immediate
needs of CHARITY elements and use case elements. The types of orders will be encoded by an integer
numeric value and will include the parameters necessary to carry out that request: IP of the Kubernetes
service that represents the element, element id, metric and/or metric value. Based on the data, the
monitoring agent will generate the necessary commands according to the language set by the target
elements and launch the request to the specific element.

2.1.2 Monitoring architecture

The monitoring architecture, presented in Deliverable D2.1 (Figure 2), responds to the preliminary
requirements of XR applications to be developed on a multi-cloud platform, reduce complexity,
focusing on prevention and reactivity in ecosystems with heterogeneity of technologies. To translate
these formal needs into functional values, it is necessary to identify the elements of the architecture
of each UC, the links between them, and the needs of each of the developing partners.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 18 of 91

Figure 2: Monitoring Architecture defined in D2.1

The analysis of each UC and the KPIs collected in deliverable D1.3 allowed to define the set of values
to be monitored according to the needs of the UC owners. These metrics and their formats will be
consulted and processed in the different CHARITY architecture planes. Hence, it is necessary to
establish common values from the outset to advance in the development of other CHARITY elements
that depend on the monitoring system, as seen in Table 4.

Table 4: Metric definition

METRICS DEFINITION OUTPUT NAME OUTPUT UNITS FORMAT EXAMPLE

Latency

Time it takes for a request to reach the

destination and return, including the operation

time of the destination to respond to the request

latency miliseconds -ms three decimals 125,123

RTT

Round trip time. Time it takes for a request to

reach the destination and return. It doesn't

include the operation time of the destination to

respond to the request

rtt miliseconds -ms three decimals 125,123

Bandwidth
Maximum capacity that can be transmitted over a

link
bw Mbps three decimals 1000.000

CPU Percentage of used CPU cpu percentage positive integer 50

GPU Percentage of used GPU gpu percentage positive integer 50

Memory Percentage of used memory memory percentage positive integer 50

Resolution
Number of pixels a screen is capable of

displaying
resolution megapixel three decimals 4,096

Color bit depth
Number of bits needed to represent the color of

a pixel
colorbitdepth bits per pixel positive integer 24

Frame-rate Frequency at which a device displays images framerate frames per second - fps positive integer 240

Petitions per

second
Number of requests per second petitionspersecond requests per second positive integer 1000

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 19 of 91

A preliminary collection of the monitoring requirements of the use cases, from the performance of
each of the elements to the performance of the links between the different elements. To open
communications with each UC and find out their preliminary needs, ad-hoc surveys were created.
These surveys contained a table of metrics that affected the case and a series of questions with which
to delve into the types of data they need and the technologies of the elements they are developing
(see an example in Figure 3).

The results of these surveys allowed to convert the requirements into a list of values to be monitored,
with already defined formats. This allows also to design the exporters that will expose the data
collected by the Prometheus server, the core of the monitoring system. The Prometheus server pulls
metrics from elements monitored through the HTTP endpoint each one uses to communicate. To
expose these metrics, the elements use exporters, which collect the monitoring information, convert
it to the format used by Prometheus and expose it to the outside.

The extensive use of Prometheus implies the existence of a community that maintains numerous
exporters developed by third parties, which are already identified in the tables in the following sections
focused on each use case. However, XR applications involve the appearance of new elements that
require the development of custom exporters, for which Prometheus offers detailed documentation
and compatibility with the most common programming languages. Therefore, the collection of
information, made through a questionnaire (as in Figure 3), needs to be made prior to the development
of the monitoring system is a key step for the following phases, since it allows efforts to be focused on
understanding the elements, their languages and the need or not to develop custom exporters, that
can be similar between different use cases.

Figure 3: Questionnaire for Collins Aerospace

Prometheus allows the use of four metric formats, two of them for individual values and the other two
for storing a set of values during a certain period. Counter is an integer value that is incremented by
one or reset to zero, while gauge allows the numeric value to increment and decrement. Histogram
allows to collect values between certain margins over a period of time to later perform statistical

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 20 of 91

analysis. The use of summary is similar to that of histogram, with the difference that it does not require
a bucket definition, so it allows obtaining frequencies of more adjusted values than those of a
histogram. In the questionnaires made to the UCs, these four possibilities were offered for the values
to be monitored and they were asked to choose the formats according to the needs of each of their
elements. In the following tables they will be defined as Counter -C-, Gauge -G-, Histogram -H- and
Summary -S-.

The information discussed in this section serves as background for the following sections, which
include the tables with the monitoring needs of both use cases and CHARITY own architecture,
compiling metrics, formats and the existence of exporters already developed that expose the data.

2.2 UC1-1 - UC1-2: HOLO 3D - Holographic concert and holographic meeting

The preliminary level of development of the use cases is different for each of the applications, so not
all of their microservices are already defined or implemented. In the case of the holographic systems
for concerts and meetings devised by Holo3D, we find key metrics related to image quality, as well as
the performance of communications to eliminate delays and offer a real-time experience.

Table 5: UC1-1 and UC1-2 - elements and metrics

2.3 UC1-3: SRT - Holographic assistant

The elements of the SRT holographic assistant are developed on Windows servers, which already have
existing exporters to expose data in Prometheus format. The only custom exporter to create is the one
that involves the end user of the application. The creation of this type of exporter is common to all use
cases, since Prometheus cannot monitor screens, virtual reality headsets or cockpits. Its monitoring
will be carried out on another element of the architecture of the use case that communicates with
these final elements.

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

Musician (PC with

camera, microphone)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Client (person

watching the

hologram on a

holographic display)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows

server
Ready

Speaker (PC with

camera and

microphone)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Client (person

watching the

hologram on a

holographic display)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows

server
Ready

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 21 of 91

Table 6: UC1-3 - elements and metrics

2.4 UC2-1: ORAMA - Medical training

Surgical learning through extended reality implies high synchronization between all the participants in
the session to accurately simulate the collaborative work that takes place in an operating room
between the end users of the application and the responses of the virtual elements to collisions with
users.

Table 7: UC2-1 - elements and metrics

2.5 UC2-2: DOTES - Virtual tours

Virtual tour applications are widely popular; however, they are still far from providing a realistic
immersive user experience as they don’t focus on the limitations that the network imposes on
application performance. To achieve the quality of the image and interaction with the scenarios that
DOTES plans with its application, it’s essential that the communication speeds of the network and the
processing of the elements adjust to their maximum performance.

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

PC with holographic

3D device and

Eyetracker

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows

server
Ready

SRT_SW_CLIENT SRT_SW_CONTENT HG HG HG G - G H G G EXPORTER
Windows

server
Ready

SRT_SW_CONTENT
SRT_SW_BEHAVIOUR,

SRT_SW_PCGEN
HG HG HG G G G - - - EXPORTER

Windows

server
Ready

SRT_SW_PCGEN CHARITY_SW_PCENC HG HG HG G G G - - - EXPORTER
Windows

server
Ready

CHARITY_SW_PCENC SRT_SW_CLIENT HG HG HG G G G - - - EXPORTER
Windows

server
Ready

SRT_SW_BEHAVIOUR Google API HG HG HG G - G - - - EXPORTER
Windows

server
Ready

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

VR equipment vendors

(PC, and/or Head-

mounted display,

other controllers)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Signalling Service LSpart_1 HG HG HG G G G - - - CUSTOM - To develop

LSpart_1 LSpart_2 HG HG HG G G G - - - EXPORTER
Windows

server
Ready

LSpart_2
LSpart_1

HG HG HG G G G - - - EXPORTER
Windows

server
Ready

Relay server LSpart_1 HG HG HG G - G - - - EXPORTER
Windows

server
Ready

Lspart_1 - Controller

interface ?
HG HG HG EXPORTER

Windows

server
Ready

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 22 of 91

Table 8: UC2-2 - elements and metrics

2.6 UC3-1: ORBK - Mixed reality

The extended reality application devised by ORBK focuses on the user's interaction with the virtualized
scenario, the virtual objects introduced and that all this happens with the minimum delay between all
the users of that application session. The mesh collider that is being developed in the CHARITY project
is key to the performance between real image and virtualized elements, and to achieve the KPIs of the
next generation XR applications, a proactive adaptive architecture like CHARITY is needed.

Table 9: UC3-1 - elements and metrics

2.7 UC3-2: Collins Aerospace (CAI) - Flight simulator

To date, the simulation of high-speed scenarios has been limiting in terms of collaborative applications
due to the difficulties of synchronization between users and the performance of the different
microservices in charge of predicting the images to be displayed in the participants. In the case of
Collins Aerospace, an edge architecture is proposed to reduce interaction times and control over the
requests received by each element to show the highest image quality to always maintain
synchronization between its users.

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

Cyango Story - front-

end
Charity edge HG HG HG - G - H G G CUSTOM - To develop

Cyango Cloud Editor -

front-end
Charity edge HG HG HG - G - H G G CUSTOM - To develop

Charity media

converter
Cyango API HG HG HG G G G - - - CUSTOM - To develop

Cyango API 3D engine HG HG HG G - G - - - CUSTOM - To develop

File Hosting 3D engine HG HG HG G - G - - - CUSTOM - To develop

3D engine
Cyango front-

end
HG HG HG G G G - - - CUSTOM - To develop

Image Engine HG HG HG G CUSTOM - To develop

Video Engine (replace

by charity media

converter)

HG HG HG G CUSTOM - To develop

Livestream service HG HG HG G CUSTOM - To develop

Database - Mongo DB HG HG HG - EXPORTER mongoDB Ready

Transcribe Service HG HG HG - CUSTOM - To develop

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

Game client Game Server HG HG HG - - - H G G CUSTOM - To develop

Game Server

Game client,

Mesh collider,

Game Servers

Status DB

HG HG HG G - G - - - CUSTOM - To develop

Game Servers Status

DB
Game Server HG HG HG G - G - - - EXPORTER

Cloud

Watch
Ready

Charity Mesh

collider
Game Server HG HG HG G G G - - - CUSTOM - To develop

Mesh Merging

Service by CNR
Game Server HG HG HG - G - - - - CUSTOM - To develop

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 23 of 91

Table 10: UC3-2 - elements and metrics

2.8 Relationship with the CHARITY Architecture

The adaptive scheme devised by CHARITY implies the migration of elements to offer maximum
performance in services and applications, something that does not only affect the deployed
applications but also the elements of the CHARITY architecture that work with them and resources
available in the different cloud domains. The monitoring is a key part between dynamically adaptive
network-aware services and efficient exploitation of resources being in continuous communication
with the Monitoring & Reaction Plane. This plane is in charge of making proactive decisions, avoid
delays and improve the quality of the next generation XR applications. CHARITY architecture
performance is defined by use cases extreme KPIs, therefore, the latencies and bandwidths required
between use case microservices must be directly proportional in the elements of the CHARITY
architecture to ensure adaptability to the performance required by the applications. The continuous
monitoring of elements and the network that connects them is what allows us to anticipate
performance failures that will affect the gaming experience, so monitoring, prediction and migration
are the key cycle in the CHARITY project after the initial deployment of the applications. This is only
possible with the continuous performance analysis of all the components and the available resources
for the modification of the deployed architecture in order to achieve the best possible performance.

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color

bit

depth

Frame

rate

HTTP

Endpoint

Exposer

Exporter
Endpoint

Status

Cockpit (flight stick,

thrustor, pedals)

Flight Oracle,

Scene

Management

HG HG HG - - - H G G CUSTOM - To develop

Flight Oracle - edge
Terrain

Management
HG HG HG G - G - - - CUSTOM - To develop

Scene Management -

edge
Device HG HG HG G G G - - - CUSTOM - To develop

Terrain Management -

cloud

Scene

Management
HG HG HG G G G - - - CUSTOM - To develop

Terrain DB - cloud

Terrain

Management,

Image Generator

HG HG HG G - G - - - EXPORTER
PostgreSQ

L
Ready

Arena Management -

cloud

Scene

Management
HG HG HG G - G - - - CUSTOM - To develop

Flight Dynamics

Flight Oracle,

Cockpit, View

Builder

HG HG HG G G G - - - CUSTOM - To develop

Image Generator
Flight Oracle,

Terrain DB
HG HG HG G G G - - - CUSTOM - To develop

Frame Caché

View Builder,

Resolution

Upscaler, Image

Generator

HG HG HG G G G - - - EXPORTER Redis Ready

View Builder

Flight Dynamics,

Frame caché,

WARP, web RTC

Client

HG HG HG G G G - - - CUSTOM - To develop

WARP View Builder HG HG HG G G G - - - CUSTOM - To develop

web RTC Client PC-HMD HG HG HG G G G - - - CUSTOM - To develop

PC, HMD webRTC HG HG HG G - G H - G CUSTOM - To develop

Resolution Upscaler Frame Caché HG HG HG G G G - - - CUSTOM - To develop

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive and network-aware services (preliminary)

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 24 of 91

The elements of the CHARITY architecture that are under development will require the creation of custom exporters adapted to the work of the developers, since
they are new services that are not based on existing solutions. These exporters will be developed in the languages of the services themselves and will be in charge
of adapting formats to the metrics managed by Prometheus and offering an exposure point that will be consulted by the Prometheus monitoring server, as listed in
Table 11 and Table 12. The initiation of the development of these exporters is planned for the coming period.

Table 11: Architecture - elements and metrics monitoring and reaction plane

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive and network-aware services (preliminary)

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 25 of 91

Table 12: Architecture - elements and metrics other planes

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 26 of 91

3 CHARITY Edge Storage (CHES)

3.1 Component descriptions

The CHARITY Edge Storage Component (CHES) is responsible for providing optimized edge storage
services to the CHARITY framework and its hosted applications. These services include data storage,
retrieval and migration tasks, security and privacy protection capabilities, QoS and QoE violation
prevention and mitigation as well as other data-related services that serve the runtime requirements
of CHARITY. In detail, the edge storage component has to provide a reliable, fast, stable and secure
shared storage engine, accessible by all devices and users in an edge-cloud. Furthermore, it needs to
be extremely lightweight since it is created for edge devices with extremely limited resources, like
Raspberry Pies or other micro-computer devices.

Edge nodes generally have limited computation, storage, network, or power resources. The
distributed, dynamic and heterogeneous environment in the edge and the diverse application’s
requirements pose several challenges. The edge storage component needs to overcome some inherent
edge challenges like:

• Coordination of unreliable devices and network

• Hardware and software incompatibilities that arise due to the plethora of different devices

• Mobility of the devices and the users (in some Use Cases)

• Integration of different data storage formats and data types

• Limited resources of the edge devices

• Security and privacy concerns

• QoE insurance

CHES component is based on the Kubernetes (K3s)3, MinIO4 and Prometheus5 technologies, combining
and optimizing them in order to better serve the needs of CHARITY. Kubernetes is an open-source
system for automating deployment, scaling, and management of containerized applications. More
specifically, a lightweight Kubernetes distribution built for IoT & edge computing is used, called K3s.
K3s is a highly available, certified Kubernetes distribution designed for production workloads in
unattended, resource-constrained, remote locations or inside IoT appliances. As a storage solution, an
open-source framework created by IBM is utilized, called MinIO. MinIO is an inherently decentralized
and highly scalable Peer-to-Peer solution, allowing us to deploy it freely on usable nodes. It is designed
to be cloud native and can run as lightweight containers managed by external orchestration services
such as Kubernetes. It supports a hierarchical structure in order to form federations of clusters and it
has been proven as a valid candidate for an edge data storage system[1]. MinIO writes data and
metadata together as objects, eliminating the need for a metadata database. In addition, MinIO
performs all functions (erasure code, bitrot check, encryption) as inline, strictly consistent operations.
The result is that MinIO is exceptionally resilient. Moreover, it uses object storage over block storage
so it is in fact a combination of the two systems, preserving the lightweight distributed nature of block
storage while providing the plethora of metadata and easy usage of the object storage. Unlike other
object storage solutions that are built for archival use cases only, the MinIO platform is designed to
deliver the high-performance object storage that is required by modern big data applications. In
addition, MinIO provides both a web-based GUI and an AWS S3 compatible API library. The Kubernetes
Dataset Lifecycle Framework provided by IBM’s Datashim6 is employed on top of MinIO, allowing the
edge storage component to be used as a file system folder, which is useful for applications that we

3 https://k3s.io/

4 https://min.io/

5 https://prometheus.io/

6 https://datashim.io/

https://k3s.io/
https://min.io/
https://prometheus.io/
https://datashim.io/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 27 of 91

cannot or do not want to integrate with the Restful API of MinIO. A detailed description of the
Kubernetes Dataset Lifecycle Framework is provided in Section 3.1.1. Finally, Prometheus is
responsible for collecting monitoring data about the real-time performance of the nodes and the
component as a whole to analyze the behaviour of different applications and optimize the cluster
architecture, the options, and the data distribution.

Additionally, a Localized Docker Registry (LDR) is provided using CHES as its file storage backend, in
order to move application images closer to the edge and limit network traffic and image download
times. CHES Localized Docker Registry hosts the Docker images and employs Kubernetes
containerization in order to provide its services, creating a new pod in the CHES namespace that is able
to connect to the Minio storage backend. In addition, CHES registry creates a set of secrets that allows
the secure communication between the registry and its clients using the HTTPS protocol and a basic
authentication scheme.

3.1.1 Kubernetes Dataset Lifecycle Framework

Hybrid edge/cloud environment is rapidly becoming the new trend for organizations seeking the
perfect mix of scalability, performance and security. As a result, it is now common for an organization
to rely on a mix of on-premises data centers (private cloud), and cloud/edge solutions from different
providers to store and manage their data. Nevertheless, many obstacles arise when applications have
to access the data. On the one hand, developers need to know the exact location of the data and, on
the other hand, manage the correct credentials to access the specified data-sources holding their data.
In addition, access to cloud/edge storage is often completely transparent from the cloud management
standpoint and it is difficult for infrastructure administrators to monitor which containers have access
to which cloud storage solution. Even if containerized components and micro-services are widely
promoted as the appropriate solution for efficiently deploying and managing storage over a hybrid
edge/cloud infrastructure, containerization makes it more difficult for the workloads to access the
shared file systems. Currently, there are no established resource types to represent the concept of
data-source on Kubernetes. As more and more applications are running on Kubernetes for batch
processing, end users are burdened with configuring and optimizing the data access [2].

To tackle the aforementioned issues, the Dataset Lifecycle Framework (DLF) is employed, which is an
open-source project that enables transparent and automated access for containerized applications to
data-sources. DLF enables users to access remote data-sources via a mount-point within their
containerized workloads and it is aimed to improve usability, security and performance, providing a
higher level of abstraction for dynamic provisioning of storage for the users’ applications. By
integrating DLF on Kubernetes pipelines, it is able to mount object stores as Persistent Volume Claims
(PVCs), which are pieces of storage in the cluster, and present them to pipelines as a POSIX-like file
system. In addition, DLF makes use of Kubernetes access control and secret so that pipelines do not
need to be run with escalated privilege or to handle secret keys, thus making the platform more secure.

In more technical detail, DLF orchestrates the provisioning of PVCs required for each data-source,
which users can refer to their pods (the smallest deployable unit in Kubernetes), allowing them to focus
on the actual workload development rather than configuring/mounting/tuning the data access.
DLF is designed to be cloud-agnostic and due to Container Storage Interface (CSI)7, it is highly extensible
to support various data-sources. CSI is a standard for exposing arbitrary block and file storage systems
to containerized workloads on Container Orchestration Systems (COS) like Kubernetes. With the
adoption of COS, the Kubernetes volume layer becomes truly extensible. Using CSI, third-party storage
providers are able to write and deploy plugins exposing new storage systems in Kubernetes without
interacting or changing the core Kubernetes code. This provides Kubernetes users more options for
storage and makes the system more secure and reliable. On the infrastructure side, DLF also enables
cluster administrators to easily monitor, control, and audit data access.

7 https://kubernetes-csi.github.io/docs/

https://kubernetes-csi.github.io/docs/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 28 of 91

DLF introduces the Dataset as a Custom Resource Definition (CRD)8, which is a pointer to existing S3 or
NFS data-sources. A Dataset object is a reference to a storage provided by a cloud-based storage
solution, potentially populated with pre-existing data. In other words, each Dataset is a pointer to an
existing remote data source and is materialized as a PVC. The Dataset is a declarative construct that
abstracts access information and provides a single reference for data in Kubernetes. Users only need
to include this reference in their deployments to make the data available in pods, either through the
file system or through environment variables [3].

Figure 4 illustrates an example configuration of a Dataset CRD for data stored in COS. The mandatory
fields are the bucket, endpoint, accessKeyID, and secretAccessKey. The bucket entry creates a one-to-
one mapping relationship between a Dataset object and a bucket in the COS. The accessKeyID and
secretAccessKey fields refer to the credentials used to access this specific bucket.
DLF is completely agnostic to where/how a specific Dataset is stored, as long as the endpoint is
accessible by the nodes within the Kubernetes cluster, in which the framework is deployed.

Figure 4: An example of mounting a PVC created by the DLF integration

Creating a CRD is just the first step to add custom logic in the Kubernetes cluster. The next step is to
create a component that has embedded the domain-specific application logic for the CRD. Essentially,
a service provider needs to develop and install a component which reacts to the various events which
are part of the lifecycle of a CRD and implements the desired functionality.

DLF utilizes the Operator-SDK, an open-source component of the Operator Framework9, which
provides the necessary tooling and automation in the development of these components in an
effective, automated, and scalable way. Operator-SDK is utilized to create the Dataset Operator in DLF.
Its main functionality is to react to the creation (or the deletion) of a new Dataset and materialize the
specific object. Specifically, when a Dataset gets created, the software stack invokes the necessary
Kubernetes CSI plugin and creates a PVC that provides a file system view of the bucket in the COS.

Figure 5 demonstrates in an abstract view, the Dataset Lifecycle Framework with the various
components employed in an example of a two-node K3s cluster.

8 https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions

9 https://operatorframework.io/

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions
https://operatorframework.io/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 29 of 91

Figure 5: Dataset Lifecycle Framework (DLF)

3.2 Package information

3.2.1 CHES Storage

CHES is a package including Kubernetes deployment files in YAML format, installation scripts in bash
script format and a configuration file in JSON format that contains all options needed to configure the
component.

All files of the package are available on the official CHARITY GitLab page10 and can be obtained with
the following command:

$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git

In detail, we have one YAML file called chesDeployment.yaml which is the Kubernetes deployment file
for the storage server (master). This file will install all necessary services, authentication keys, roles
and images on the Kubernetes cluster, reading information from the configuration file (.conf). It will
use the Kubernetes architecture, deploying most services on the Kubernetes master. Of course, the
actual MinIO instances that store the data will be deployed on the nodes having the label “ches-
worker” set to “true”. The second yaml file is called chesClientDeployment.yaml and it will allow nodes
to use CHES as a file system folder by mounting the PVC that is connected to the CHES storage service.

The bash scripts are again two, chesInstalldeploy.sh that configures and deploys the
chesDeployment.yaml on the Kubernetes master, and chesClientDeploy.sh that configures and
deploys the chesClientDeployment.yaml on the client nodes. These scripts are just applying the options
selected in the configuration file to the YAML files and then run the necessary commands to deploy

10 https://gitlab.charity-project.eu/hua/edgestoragecomponent

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 30 of 91

the YAML files on the Kubernetes cluster. There is a third bash script called InstallScript.sh which is
configuring and deploying the chesDeployment.yaml file in a single K3s cluster node installation,
without requiring any additional configuration steps.
Finally, a yaml file called dlf_kube.yaml is used for the deployment of the Dataset Lifecycle Framework
and a bash script named Undeployches.sh which undeploys the CHES containers and jobs. A complete
list of the files included is presented in Table 13.

Table 13: List of package files for Edge storage component

Filename Description

chesDeployment.yaml Kubernetes deployment file for CHES master

chesClientDeployment.yaml Kubernetes deployment file for CHES client(s)

chesInstalldeploy.sh Bash script for deploying the CHES servers

chesClientDeploy.sh Bash script for deploying the CHES client(s)

InstallScript.sh
Bash script for deploying the CHES servers on single
node clusters

configuration_file.conf
JSON file containing the configuration options for
CHES

dlf_kube.yaml
Kubernetes deployment file for the Dataset Lifecycle
Framework

Undeployches.sh
Bash script for undeploying the CHES containers and
jobs

3.2.1.1 Kubernetes Dashboard

Along with the CHES component, the Kubernetes dashboard is provided, which is a web-based
Kubernetes user interface. In general, Kubernetes dashboard is used to deploy containerized
applications to a Kubernetes cluster, troubleshoot the containerized applications, and manage the
cluster resources. In addition, the dashboard can get an overview of applications running on a cluster,
as well as for creating or modifying individual Kubernetes resources (such as Deployments, Jobs,
DaemonSets, etc). Dashboard also provides information on the state of Kubernetes resources in the
cluster and on any errors that may have occurred. The associated files are located in the same
repository with CHES.

In detail, the installation of Kubernetes dashboard includes four files, two deployment yaml files and
two bash scripts. A bash script named InstallDashboard.sh is used for deploying the Kubernetes
dashboard in a K3s cluster. A complete list of the files included, is presented Table 14.

Table 14: List of files included in the Kubernetes Dashboard

Filename Description

InstallDashboard.sh Bash script for deploying the Kubernetes Dashboard

recommended.yaml
Kubernetes deployment file for Kubernetes
dashboard

dashboard_account_roles.y

aml

Kubernetes deployment file for creating a minimal
RBAC configuration, i.e. a Service Account and a
ClusterRoleBinding

UndeployDash.sh
Bash script for undeploying the Kubernetes
Dashboard

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 31 of 91

3.2.2 CHES Localized Docker Registry

CHES Localized Docker Registry is the second sub-component that realizes a localized registry in order
to support the faster application deploying and limit the network flooding caused by large image
downloads during deployment. This functionality acts as a proactive caching mechanism by optimizing
the download delays and the network traffic. The port of the CHES LDR as well as its credentials are
pre-configured using the generalized configuration file that is packed with the edge storage solution.
Figure 6 illustrates the CHES LDR sub-component. The associated files are separated into a different
folder, in order to separate them by functionality, make documentation and maintenance easier and
decouple their installation process.

Figure 6: CHES Localized Docker Registry

CHES Localized Docker Registry can be downloaded by running the command:

$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git

In detail, the installation of CHES LDR includes six files, four deployment yaml files and two bash scripts.
The yaml files are deploying all the necessary containers and jobs that need to be executed to setup
and configure the registry, in order to be functional and accessible by other containers hosted in the
same K3s cluster. A complete list of the files included is presented in Table 15 .

Table 15: List of files included in the CHES Registry repository

Filename Description

add_certs.yaml

Kubernetes deployment for a daemon job that
adds the appropriate SSL certificates to new

containers

add_to_hosts.yaml

Kubernetes deployment for a daemon job that
adds the appropriate configurations to the

hosts files of new containers

deployment.yaml
Kubernetes deployment for the Docker registry

container

registry_setup.sh
Bash script for deploying the CHES LDR

containers and jobs

registry_uninstall.sh
Bash script for undeploying the CHES LDR

containers and jobs

test_deploy.yaml

Kubernetes deployment for a test container
that loads a docker image from the deployed

CHES LDR

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 32 of 91

3.2.3 Semi-automated Deployment and off-loading

In the context of the presented solution, a set of bash and yaml scripts have been developed that
handle all the configuration, installation and deployment processes that need to be contacted before
and after the MinIO workers are deployed. These configurations include firewall rules, DNS settings,
package installations and security checks that take into account the setup environment, the
architecture and resources of the physical machines and the software involved. These tasks enable the
semi-automatic deployment of the edge storage solution, forming complex pipelines that in most
other cases are performed manually by a system administrator. This ensures that scaling can be
performed seamlessly on each cluster, regardless of the underlying physical machines that act as
nodes. In addition, off-loading of data can be achieved by "ordering" more instances of the MinIO
worker to be deployed on more nodes and adding them in the same MinIO cluster in real-time.

3.3 User Manual

3.3.1 CHES Storage

We have three ways to utilize CHES, the first way is through the MinIO Web GUI which is clearly
described in detail on the official MinIO documentation11. A sample MinIO storage deployment can be
seen in Figure 7.

Figure 7: The MinIO web-based interface

The second way is through the MinIO client which is a command line tool that is also documented in
detail on the official MinIO website12. A connection to a remote host can be seen as an example in
Figure 8.

11 https://docs.min.io/docs/minio-quickstart-guide.html

12 https://docs.min.io/docs/minio-client-complete-guide.html

https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-client-complete-guide.html

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 33 of 91

Figure 8: An example connection with the command line MinIO client

Additionally, using the integrated Datashim’s DLF, CHES can be accessed through the K3s deployment
files by mounting the PVC it creates as a system volume. Detailed reference of the usage of PVCs can
be found in the Kubernetes API documentation13. An example of the deployment is illustrated in Figure
4.

Moreover, the Kubernetes dashboard which is a web-based Kubernetes user interface is illustrated in
Figure 9.

Figure 9: Kubernetes Dashboard

3.3.2 CHES Registry

CHES LDR can be accessed through the Docker Registry APIs. These APIs are described in the official
Docker documentation14. An example of the catalog API, which lists the available repositories, is
illustrated in Figure 10. Catalog API is the simplest of the APIs provided, displaying a list of the available
images pushed in a registry. In our case it is hosting an example hello-world image.

Figure 10: Example of the catalog API for CHES LDR hosted in a local K3s cluster

13 https://kubernetes.io/docs/concepts/storage/persistent-volumes/

14 https://docs.docker.com/registry/spec/api/

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.docker.com/registry/spec/api/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 34 of 91

3.4 Licensing

This component, including all originally created source files, scripts and other resources is going to be
published as free software under the terms of the GNU General Public License version 3 or later, as
published by the Free Software Foundation.

MinIO is provided under GNU Affero General Public License version 3 which enables us to use it as an
open-source component providing that we also use a GNU public License.

Prometheus, Datashim and K3s are protected under Apache License which gives us full usability of
their open-source components.

3.5 Results obtained in relation to the objectives (KPIs)

The work conducted in Task 3.2 aims in achieving the objectives along with the requirements and
targeted KPIs. More specifically, the KPIs that will be met from Objective 2 (Provide holistic support for
the orchestration of advanced media solutions) are:

• KPI-2.2 Storage formats: at least one (block, file, object)
o As already mentioned, as a storage solution, an open-source framework created by

IBM is utilized, called MinIO. This framework uses object storage over block storage so
it is in fact a combination of the two systems, preserving the lightweight distributed
nature of block storage while providing the plethora of metadata and easy usage of
the object storage.

▪ Extensive research has been conducted in the field of storage solutions in edge
computing infrastructures. A scientific journal entitled “A Lightweight Storage
Framework for Edge Computing Infrastructures” [28] has already been
submitted which presents the proposed new edge storage solution (CHES).

• KPI-2.3 Edge storage hit rate: higher than 70%
o The native “disk cache” feature of MinIO is investigated. Disk caching feature refers to

the use of caching disks to store content closer to the tenants allowing users to have
the following: i) object to be delivered with the best possible performance and ii)
dramatic improvements for time to first byte for any object.

o An online proactive caching scheme based on deep recurrent neural network models
is investigated to predict time-series content requests and update edge caching
accordingly.

• KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per second
o A blockchain database, namely BigchainDB15 is being explored. More specifically,

BigchainDB supports both blockchain (decentralization, immutability, and owner-
controlled assets) and database properties (high transaction rate, low latency,
indexing, and structured data querying). One design goal of BigchainDB is the ability
to process a large number of transactions each second. Each BigchainDB instance is a
virtual concept consisting of three parts: i) a MongoDB database, ii) a BigchainDB
server and iii) a Tendermint communication node which uses a Byzantine Fault
Tolerant middleware for networking and consensus. Preliminary results demonstrated
that MinIO is able to achieve a higher transaction rate (4.3) compared to BigchainDB
(3.2) for a specific class of experiments. The performance evaluation was executed
through Locust16, an open-source load testing framework that enables the definition
of user behaviour and supports running load tests distributed over multiple machines

15 https://www.bigchaindb.com/

16 https://locust.io/

https://www.bigchaindb.com/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 35 of 91

and simulates millions of simultaneous user requests. Overall, the experimental
results demonstrated that MinIO presents the best performance in both read and
write operations. To further evaluate the storage systems, we also measured the RAM
usage, the CPU usage, the disk latency and the disk IO time for a single user's request
and for all users' request. Again, MinIO achieved the best performance. A scientific
journal in the context of performance of storage systems in edge computing
infrastructures entitled “Performance Analysis of Storage Systems in Edge Computing
Infrastructures” has been published in Applied Sciences (MDPI) to the Special Issue
Cloud, Fog and Edge Computing in the IoT and Industry Systems. However, we will
investigate further the blockchain capabilities for increasing the edge storage
transaction rate.

3.6 Relation to research questions

There are a number of research questions regarding the edge storage, which are actively being
researched at the moment. These questions include the intelligent data placement in computing
networks, the pro-active and intelligent caching of data, the minimization of resource waste and the
maximization of resource efficiency and the harmonization of IoT network diversity. The present
research work and the designed component provides solutions to most of these open research
questions by providing a complete edge storage solution that takes into account the present issues in
IoT edge networks and the vast number of data transactions that continuously happen between them.

Pro-active and intelligent caching of data are two questions that also trouble the academic community
and the industry for a very long time. It concerns the replication or migration of data before they are
needed to have them ready for usage when they are finally needed. This minimizes the wait time of
operations since the I/O and network operations, which usually take much more time to be completed
than processing does, are performed before they are needed. In order to achieve that, an edge storage
system needs to be able to predict the need for a specific data packet early enough to be able to
complete the data operations before the need arises. Modern approaches are using machine learning
in order to profile the applications and the users of a system, extracting patterns of behaviour that hint
at the future data operations. The presented solution is using Kubernetes as an orchestrator, which
enables us to define certain node affinity and node selection rules that aid the selection of storage
workers and the placement of the data inside an edge cluster. The affinity rules are relaxed rules that
are instructing Kubernetes to prefer nodes that are meeting most of the affinity rules specified. On the
other hand, selection rules are strict and instruct Kubernetes to deploy the storage workers on nodes
that fulfill all of the selection rules. These rules can be dynamically set either by a network
administrator or by an automated mechanism such as an intelligent agent or a machine learning model
that can estimate the most efficient placement of storage workers.

Harmonization of IoT network diversity concerns the definition of a uniform way of handling the
various IoT devices that can be a part of an edge cluster. An IoT edge network is like a living organism.
The parts that comprise it can change at any given time either because they do not wish to be part of
the network anymore, due to hardware or software malfunction, scaling out and in operations or for
any other reason that removes or adds new devices over the device-edge-cloud continuum. The
presented solution is using K3s as an orchestrator which is compatible with most devices that run
windows or unix based operating systems. This enables the administrators to create generalized
deployment scripts that handle the deployment, configuration, un-deployment and re-deployment of
the storage workers. These generalized scripts are highly configurable and can be edited in real time
by higher level scripts and automated mechanisms adding more layers of intelligence and automation
to these deployment and configuration processes. In addition, DLF provides a uniform way of accessing
the data, using the local file system of each device, eliminating the need of customized solutions for
each new device that becomes a member of the device-edge-cloud continuum.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 36 of 91

3.7 Evaluation of CHES

The CHARITY Edge Storage Component aims at improving the Quality of Experience (QoE) of the end-
users by migrating data “close” to them, thus reducing data transfers delays and network utilization.
To evaluate the effectiveness of the storage component, a number of resource utilization and Quality
of Service (QoS) metrics are collected using the Prometheus system. The data are collected on the
edge, by Prometheus agents running on edge nodes that handle the data storage. These data are
stored in the Prometheus database of each edge cluster. More specifically, the data are collected at
regular intervals of 5 minutes throughout the functional period of the component, i.e. for the whole
duration that the edge storage component is active and waiting for serving data requests.

The evaluation metrics employed are divided into two categories:

• Resource consumption: CPU available (total, used), RAM available (total, used), HDD available
(total, used), Network available (total, used)

• Performance: Throughput, Data request response time, and Network time

The resource consumption metrics of the first category are all being passively collected by the
Prometheus agents placed on storage nodes. The performance metrics of the second category on the
other hand, require a client-side approach so they are actively collected only during benchmarks and
tests.

The evaluation is conducted using two CHES deployments, one in a local and one in a remote edge
cluster. The behaviour of CHES is evaluated using a collection of small to medium binary files ranging
from 15KB to 10MB. All these files are forming the evaluation dataset that is stored in various MinIO
buckets, created and managed by CHES in the local and remote edge cluster. These buckets are then
mounted onto new pods, using the DLF, and these new pods are taking the role of clients, sending data
requests to the CHES and recording performance metrics for these requests.

Figure 11 illustrates the percentage change of various resource utilization metrics -CPU Usage, Memory
Usage, Available Memory, Disk Write Latency, Disk IO time- during intense data transactions and
during normal functionality of the node.

Figure 11: Percentage change of various resource utilization metric

As the results suggest, CHES is not overusing the RAM of the node, although it is slightly increasing the
usage of the CPU and the disk operations, as expected. This proves that CHES is lightweight enough to
be deployed on most edge devices. More specifically, the RAM related metrics are near to zero,
meaning almost no change, the CPU metric is slightly increased while the disk metrics are increased by
a larger degree, proving intense I/O activity.

Client-side metrics collected to assess the impact of CHES on QoE, are presenting a clearer picture of
how CHES improves the response times of various data requests. Figure 12 and Figure 13 demonstrate

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 37 of 91

the comparison between read, write and delete operations for the local and the remote CHES
respectively.

Figure 12: Read, Write and Delete operation response times in milliseconds for the local CHES deployment

Figure 13: Read, Write and Delete operation response times in milliseconds for the remote CHES deployment

Due to the object store nature of MinIO, it can be observed that write operations are more time
consuming compared to read and delete operations. On the other hand, read and write operations do
not differ much compared to each other, the only difference is the network delay for the final file
transfer, which is pretty small taking into account that present evaluation tests were conducted using
file transfers of multiple small to medium files.

The comparison between the different operations are similar but at a different scale; for the local
CHES, response times vary between 3 to 17 ms while for the remote CHES, response times vary
between 84 to 450 ms. This is becoming more obvious when putting the response times into direct
comparison, as illustrated in Figure 14. The request response time for the local CHES is under 20 ms
for all file operations which is significantly lower than the remote CHES. In summary, all data operations
were significantly enhanced during runtime when the data storage was placed near the edge devices.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 38 of 91

Figure 14: Comparison of response times for various operations for the remote and local CHES deployments

In conclusion, the above experiments prove two things: a) the lightweight nature of the edge storage
component, making it a perfect fit for edge device deployments and b) the great reduction in data
request response times, which on some edge use cases is a necessity for their basic functionality.

Detailed results can be found at the scientific conference paper entitled “Towards a Distributed
Storage Framework for Edge Computing Infrastructures” [29] presented at the 2nd Workshop on
Flexible Resource and Application Management on the Edge (FRAME 2022).

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 39 of 91

4 Resource-aware Adaptation Mechanisms

While the cloud offers extreme scaling opportunities through the dynamic allocation of physical
resources to meet demand, it comes at a cost. Apart from the design challenges of engineering an
elastically scalable architecture, the financial costs of cloud resources require careful monitoring.
Although an application may be able to physically scale to meet demand, it may not be able to do so
economically - unconstrained growth leads to unconstrained costs and if the returns do not exceed
the investment, then cost can serve as a scalability brake. Edge computing resources such as those
increasingly offered through metropolitan points of presence by hyperscalers and the forthcoming
rollout of hyper-local edge infrastructure throughout 5G radio networks, offer new architectural
options for domains such as real-time media streaming which require the flexibility of the cloud with
the low latency typically associated with locally dedicated hardware. In comparison to traditional cloud
deployment, edge resources are far scarcer requiring a more measured approach to scalability as there
may simply be insufficient physical resources available in proximity to the user for optimal operation.

Across the cloud and edge, software engineers will increasingly find themselves challenged with
designing software that needs to scale and dynamically adapt its tactics to suit the computational and
network resources currently available within the environment in which it operates. With a Service
Based Architecture approach increasingly favoured in modern architectures, there is a growing
challenge with respect to how we equip services with sufficient adaptability to adjust their operation
in line with the ebb and flow of physical resources available, and affordable, in their local environment.

4.1 Dynamic Software Adaptation

Software should be designed for change so that maintenance and reuse efforts can be minimised.
Designing for variability has the significant advantage of enabling architects and engineers to delay key
decisions until late in the development cycle or even until run time through site configuration. The
longer we can accommodate a delayed decision, the more information we may have to hand when
having to make the decision as requirements are adjusted in line with customer needs and
environmental realities. These delayed design decisions are known as variability points [6] and the
successful integration and curation of variability points has been the subject of intensive research for
decades [7]. Variability points serve a key role in the design and construction of software product lines
in which organizations seek to reassemble collections of reusable components into distinct members
of a product family through leveraging a wide array of architectural, engineering and run-time
variability point strategies ranging from abstract, interchangeable design stereotypes to run-time
command line parameters [8].

While there is much active research into Software Product Line Engineering (SPLE) to attain
development and deployment reuse efficiencies at industrial scale [9], the approach necessitates a
highly planned, rigorous, and disciplined approach to variability management throughout the software
design and implementation phases. It facilitates the reuse of software across multiple products in the
same family by carefully designing variability points that can be leveraged during the software build
and deployment process. An extension of this approach, known as the Dynamic Software Product Line
(DSPL) paradigm, merges SPLE with techniques to adapt software at runtime to produce a collection
of variability points that may be manipulated through configuration or runtime binding to alter the
behaviour of deployed software [7].

Configurability lies at the heart of modern software development and it is rare for software to be
developed to such a narrow purpose and exact set of parameter values that no deployment
configuration is required. Indeed, configurability is desirable as it can improve the versatility of
software and often enable functional behaviour or adaptation to environmental setups that were not
envisioned at the time of initial software deployment. While some software is equipped with runtime
dynamic configurability and zero downtime, the vast majority of software at least supports static
configurability. This could be facilitated through environment variables, command-line parameters or

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 40 of 91

configuration held in a file or repository of some form. Such configurability essentially exposes a
collection of variability points which can be manipulated to affect the behaviour of the software and
the principle is the same irrespective of whether the software was developed in-house, open-source
or closed-source acquired from a third party.

The number and nature of variability points exposed will vary from one application to the next and can
range from debugging trace activation to port numbers and timeout values, from sampling rates to
thread numbers. In fact, the very configurability of software often results in a software configuration
space explosion [10] that causes challenges for the testability of software (Linux has well over 10,000
configurable features [11]). In the hands of a knowledgeable user however, configuration is a powerful
tool to adapt and tune software to its environment and user needs.

4.1.1 A structure for adaptation

In [12], the authors put forth a vision of autonomic computing in which software systems could self-
manage according to specific goals. Each component would be designed as an autonomic element
which would manage its own internal behaviour and relationships with other autonomic elements
through integration of an autonomic manager in each element. This manager would take responsibility
for monitoring the operation of the element and its interactions and adjust the operation of the
element as required (e.g. enable/disable features).

The autonomic manager comprises of what has come to be known as a MAPE-K loop – Monitor,
Analyze, Plan and Execute (see Figure 15) according to available Knowledge. In DSPL, the autonomic
manager becomes the adaptation manager as shown in the figure below.

Figure 15: MAPE-K Loop [7]

The Monitoring step is concerned with capturing data regarding the properties which will drive the
adaptation choices. The Analysis step examines the monitored data and performs any necessary pre-
processing before making it available to the Planning step which decides, if adaptation is required,
which variant of the system is more suited to the current conditions. Once the variant has been
identified then the Execution step performs the adaptation.

4.1.2 Context Monitoring & Analysis

Applications and their environment need to be monitored to observe when the operation of software
needs to be adapted. To record the properties being monitored, the adaptation manager can maintain
flat context variables [13] or a more sophisticated hierarchical ontology [14] maintained as a
dynamically updated property set that can be undergo analysis using pre-defined rules or queries to
check for conditions that would warrant an adaptation.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 41 of 91

4.1.3 Planning

“Our claim is that a major reason for the lack of context-aware, adaptive mobile applications is the
inherent complexity of building them. Not only need the developers understand the main functionality
of the application and how this can be provided on a mobile device, but they also have to conceive
different application variants, specify how applications are linked to the execution context variables,
and consider which variant should be activated under which context conditions. This complexity may
easily appear like an insurmountable barrier to the developer” [13].

As mentioned previously, the potential system variant explosion arising from variability points in a
software application can overwhelm the testing efforts. If left to an adaptation manager to explore
unbridled, automated manipulation of variability points at runtime can lead to operational profiles
that were not tested or foreseen by the developers. In the field of DSPL, the approach of static goal
evolution involves an approach in which a software system has a fixed adaptation policy and system
variants [7]. In the event the system needs to adapt to a new goal (operate at a reduced media
streaming resolution for example), then the system is stopped, modified and restarted. Verification of
such systems is greatly simplified as the state space is highly constrained. This suggests a model in
which the Planning step of the MAPE-K loop can collapse to the selection of a particular variant in
response to a given goal.

4.1.4 Execution

To initiate adaptation, it is required to reconfigure the software using some form of runtime
reconfiguration mechanism. How this may be accomplished naturally depends on the design and
capabilities of the software. Approaches based on capabilities of the software architecture range from
dynamic aspect weaving essentially rewiring the software assembly on the fly [15] to service re-routing
in a service-oriented architecture. In [11], the authors examined self-adaptation within a micro-service
architecture for a media streaming platform in which they proposed leveraging the rollout
functionality available in the Kubernetes platform which can perform rolling upgrades of a given micro-
service without service interruption.

4.2 Challenges

In CHARITY we seek to enable the self-adaption of software systems to significant fluctuations in the
resource availability within the execution environment. Based on an analysis of the state of the art and
considering the particular needs of CHARITY, we identify a number of challenges.

4.2.1 Avoid design time intrusions

We seek to avoid prescriptive, opinionated approaches which step into the architecture and design of
such systems requiring particular scaffolding and algorithms to be integrated. We adopt this position
for a number of reasons. Firstly, most software is legacy software and seeking developers to modify
this software retrospectively creates a significant barrier to adoption. Secondly, updates to the
adaptation design and capabilities places an onus on developers to integrate these changes into their
software resulting, over time, in version mismatches and requiring constant vigilance to maintain
backwards compatibility. Thirdly, not all the components and services employed in a given software
system are modifiable. They may be commercial or otherwise unavailable for modification and, even
when the source is available, it may have been written by a third party (e.g. open source) and difficult
to modify without subsequent upgrade and maintenance concerns.

4.2.2 Prevent platform instability

CHARITY seeks to support a micro-service architecture which can involve chains of services working
together. When performing an adaptation, we need to be careful that the integrity of the chain is
maintained and that all services that need to be made aware of an adaptation are made aware –
regardless of where they are deployed (device, edge, cloud).

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 42 of 91

4.2.3 Accommodate user-level adaptation

CHARITY also aims to support media streaming software services that operate at scale. At any given
point in time, there will be a mix of users using a particular service that may necessitate different
priorities. For example, in a flight training simulation system, users co-operating in a key team
operational training exercise may take priority over individual users experimenting with the controls
of the flight simulator. Alternatively, we may want to maintain a high Quality of Experience (QoE) for
existing users but lower the QoE for new users entering a resource-stressed environment. Supporting
this model of operation will require that CHARITY supports a multi-tenant architecture where
applications can simultaneously operate in different modes and priorities.

4.2.4 Transparency & Tractability

It is imperative that system adaptations are predictable and visible to avoid instability or loss of
confidence.

4.3 Adaptation Infrastructure

As discussed previously, variability points are used in Software Product Line (SPL) engineering to delay
decisions until such point as we are better informed as to how software needs to adapt to its use and
environment. Run-time adaptation through manipulation of variability points at run-time is used in
Dynamic SPL (DSPL). In CHARITY we propose to implement a DSPL model which utilizes existing
variability points in a software application to provision a collection of service editions in which each
service has a number of differently configured copies of itself deployed. In this model, the function of
any given service edition does not change during its lifetime (i.e. the software itself is not expected to
self-adapt) but rather different configurations of it are selected according to the environmental
circumstances. This model is depicted below in Figure 16 in which we show three services – each with
multiple editions – that exchange information to operate an overall software application.

Figure 16: Service Editions used to satisfy different environment conditions

In effect, we propose to use static goal evolution [7] in which we constrain the variability state space
to explicitly configured variants and thus prevent the application from entering into unforeseen (and
untested) states. There are a range of challenges involved here:

• How do we enable multiple editions of a single service to operate alongside each other.

• How do we decide which editions to use under given circumstances and wire these together
into a safe and coherent service chain.

• How do we route traffic between services without them needing to be made aware of multiple
editions.

• How do we monitor the environment.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 43 of 91

As we will discuss in the following sections, we propose an evolution of the MAPE-K loop introduced
previously for runtime adaptation in DSPL. In CHARITY we propose to position a Service Mesh between
the Adaptation Management and Application Layers as shown below in Figure 17.

Figure 17: MAPEK-K look modified to include a service mesh for monitoring and execution

Based on the previously identified research and technical challenges, the following sections outline

how we plan to meet these in CHARITY.

4.3.1 Configuration Containment

One of the fundamentally transformative benefits of Docker containers for software development has
been the ability to create separate self-contained environments for experimentation and production.
On a single host, we can deploy multiple containers hosting applications that, if run collectively outside
the container confines on a single node, would come into conflict with each other – for example,
conflicting version requirements of common software packages; conflicting requests to use the same
ports, environment variables or journal files. Containers allow us to run multiple copies of the same
application side by side without coming into conflict. This ability to contain the application’s
environment to just that application allow us to painlessly run multiple copies of the same application
side-by-side with different configurations. Configurability through feature flags and configuration
options at application launch is a widely used technique in software development to offer a variety of
deployment variations to suit the needs of the given environment (whether business or operational)
[4]. Docker containers enable us to leverage the power of this configurability in a production
environment.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 44 of 91

Figure 18: Run differently configured copies of a single application simultaneously

Given a particular set of environmental conditions (e.g., GPU availability, network latency, user request
profile) then we may find that a change to the configuration of a given component to alter its mode of
operation (e.g., disable feature, reduce sampling rate) may produce a more stable application that
operates more in tune with the environment in which it finds itself.

While some software is equipped with runtime dynamic configurability and zero downtime, most will
support static configurability through environment variables, command-line parameters or
configuration held in a file or repository of some form. Such configurability essentially exposes a
collection of variability points which can be manipulated to affect the behaviour of the software -
irrespective of whether the software was developed in-house, open-source or closed-source acquired
from a third party. By leveraging the environment isolation properties of containers, we can launch
multiple instances of a service in different configurations. As we shall see, coupled with the ability of
Kubernetes to orchestrate the launch of groups of services, containers bestow a powerful ability to
seamlessly replace whole subsets of a service-based application to deliver a coherent application
variant – involving multiple individual service variants working in concert - in a safe and predictable
manner.

4.3.2 Service Routing

With more focused and cohesive segmentation of responsibilities into separate services, service-based
architectures rely extensively on inter-service communication to collectively perform their work. In
Microservice-based architectures, the mechanics of enabling services to communicate with each other
robustly requires careful and detailed design and planning. Apart from peer discovery, there are
significant challenges involved in establishing and monitoring communication links. Transferring
control from one process to another – irrespective of the distance between them – requires
coordination in the event of link failure. We must facilitate failover between multiple copies of services
and indeed decide on the efficient distribution of traffic when multiple peers are available to accept it.

The Service Mesh concept [5] seeks to offer an overlay onto existing microservice architectures to take
over many of the common operational and infrastructure responsibilities that would otherwise have
to be engineered into the services themselves. Of particular interest within the context of application
adaptation is inter-service communication and whether we can leverage a service mesh to deliver a
frictionless means of dynamically routing traffic between peers such that we can swap a given service
for a differently configured variant and update the routing so that other peers do not experience any
collateral effects.

The service mesh is manifested as a collection of proxy processes that sit between services. Each
individual service in the application is deployed with a sidecar network proxy which operates as a
mediator for all inter-service communication on the service’s behalf. Services do not require any
knowledge or modification to operate with the sidecars which simply position themselves as highly
efficient communication mediators.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 45 of 91

 Figure 19: The Sidecar Pattern [22] and an architectural overview of its use in the Service Mesh [5]

The Service Mesh [5] offers a powerful and unintrusive mechanism to introduce flexible and dynamic
route configurability amongst a group of communicating services and we intend to leverage it for the
runtime adaptation of service-based applications.

4.3.3 Application Quality Modes

Consider an application comprised of three microservices as shown below. The services deliver a
response or perform a particular action in accordance with a request. We refer to the sequence of
services involved in delivering on this response as a Service Chain.

Figure 20: Simplified Application with Microservice Architecture

For an interactive XR streaming application the Quality of Experience is typically measured according
to the response or action performed in response to the triggering request on several dimensions.

Figure 21: XR Application Quality of Experience is often multi-faceted

The Round-Trip Time (motion-to-photon, glass-to-glass) captures how long it takes for the application
to deliver updated imagery in response to the triggering user interaction. The Frame Rate captures
how many frames per second the application is delivering to the user device. Resolution captures how
many pixels per frame are being rendered. Just in Time (JIT) Correction is the term we will assign to
processing carried out on the generated media stream to try and compensate for insufficient frame
rates, delays or insufficient resolution. Such processing generally involves algorithmic guess work to
repair incomplete media streams on the fly through pixel or frame rate upscaling. Features typically
involve visual flourishes such as sophisticated weather effects, reflections and shadows but could also
include some AI-driven augmentation such as object recognition and framing to assist the end user.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 46 of 91

In an ideal world, we may want a sub-20ms RTT, 90 FPS, 4K resolution, no need for JIT correction and
full feature set enabled. In an ideal world we have unlimited resources. The application provider knows
that resources are not unlimited and that networks get congested. We propose to offer the application
provider the facility to specify configurations of their application that would offer acceptable, but less
than ideal, Quality of Experience specifications. The objective is to allow the application to remain
operational in resource contested environments. To explore this concept, we present the application
provider with the facility to specify three modes of target QoE – High, Medium, Low – representing the
different levels of QoE we want to be able to deliver. We will term these QModes. While the objective
of QModes is to capture different levels of physical resource consumption by the application running
in a virtualized environment, what constitutes a given QMode only makes sense within the context of
a particular application. QModes may be differentiated for example, by the set of rendered features
(e.g., accurate weather effects, reflections, shadows), by the number of simultaneously active users,
the resolution and/or frame rate delivered to the HMD, or even the placement and operation of service
components across the device-edge-cloud. For a given application deployed on our platform, it’s
QMode values map to distinct deployment configurations of the application.

In the figure below we see three different configurations of an application and the introduction of a
logical switch that can chose which deployment configuration to route traffic to.

Figure 22: Logical QMode Switch and how it could be employed to divert traffic between different service
configurations

In the above model, we can see that a single service instance may be involved in multiple chains. We
will return to this later.

A multi-user application will likely be operating in multiple QModes simultaneously. We view QMode
as being tied to a particular traffic characteristic. Different users may be assigned different QModes
according to their circumstances (e.g., SLA, device capabilities, local network congestion levels, etc.)

Conceptually, a QMode enables network routing in a similar fashion to a VLAN in that it allows us to
segment and route traffic according to a tag.

The choice of QMode to perform at can depend on a variety of factors. Application providers may elect
to differentiate based on class of device (is it capable of high resolution, does it support frame
interpolation17, etc.), speed of network, availability of edge resources, user contract, number of local
active users, etc.18. To be able to make this choice, however, requires that we gather and monitor this
information in a centralized monitoring framework.

17 For example, SteamVR Motion Smoothing or Oculus Asynchronous Space and Time warping

18 It is quite possible that three QModes would not be sufficient to capture the complexity of conditions and
granularity of configuration options available to a given application provider. We have restricted ourselves to
three modes to simplify concept evaluation and development.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 47 of 91

Figure 23: Monitor for conditions that warrant changes to QMode

4.3.4 Monitoring & Analysis

Adaptation requires context. The drivers for adaptation can vary according to the business and
resource environment but in general, applications must adapt to resource availability. An XR
application distributed across device, edge and cloud resources can depend on a delicate,
geographically dispersed, web of resources. Monitoring every leveraged resource individually, seeking
to detect bottlenecks and deficiencies, can overwhelm our decision making. Without intimate
knowledge of an application’s resourcing windows and inbuilt compensation mechanisms19, we may
elevate disparate resource stresses (such as link delays, GPU overload, database response times) to
high priority problems that require countermeasures while, in fact, the application is still able to
operate as a whole and deliver an acceptable quality of experience to the end user. A more sensible
approach would appear to be initiating action in response to a small number of high-level red flags
that holistically capture underlying problems rather than monitoring a multitude of low-level warning
indicators.

The ultimate purpose of any application is to perform its work and deliver acceptable performance and
experience to the end user. If the application is delivering an acceptable Quality of Experience (QoE),
then we could deem the application to be performing adequately and not in need of adaptation.

19 It may transpire, for example, that a well-resourced database equipped with advanced SSD disks can
compensate for an underperforming cache relying on overly stressed RAM. Such trade-offs and compensations
are generally particular to each distinct application. In addition, application providers generally dimension some
latitude into their resource requirement specifications to accommodate leg room and usage peaks that may not
always be used. An over-eager adaptation mechanism may seek to fix a problem that does not need fixing.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 48 of 91

Figure 24: Monitoring High level indicators reduces decision complexity

In Figure 24 we see representative XR metrics we can monitor for conditions that capture the overall
fitness for purpose of the application:

• Round Trip Time: the length of time between a user action and its reflection on the visual
experience

• Frame Rate: How many frames per second we are delivering to the user device

• Resolution: the pixel depth of the frames we are delivering

• AI Compensation: Rate of interpolation/extrapolation we need to do locally to ‘fix’ sub-
standard resolution or frame rate being delivered from the visual renderer. This may arise if a
remote visual renderer generates lower quality media streams to reduce bandwidth needs
from the cloud while it is up-scaled at the edge or on the device.

By monitoring these metrics, we can assess the application’s fitness. Requesting the application
provider to specify meaningful thresholds and operating windows for these metrics is reasonable –
unlike requesting them to specify a combination of hardware resource availability deviations that could
expose a problem.

Figure 25: Monitoring the manifested user experience is more tractable and efficient

While unacceptable levels of application fitness may highlight a problem, high-level indicators cannot
inform us what the cause of it is. They inform us when to investigate a manifest problem rather than
necessitating constant low-level monitoring and analysis to ascertain if we can deduce a problem.
Root-cause investigation requires examination of far more detailed and lower-level metrics (such as

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 49 of 91

individual service performance, particular link latencies or bandwidth shortcomings, and queueing
backlogs) as gathered by the CHARITY monitoring platform. The driver for this level of analysis is that
applications may be adapted differently depending on the root cause of the problem. For example, a
deficiency in the response time from a cloud-based service to an edge node may require different
adaptation than experiencing resource stresses on the edge node itself. We seek to enable application
providers to fully leverage the adaptation avenues they have available to them within their application
design.

This requires us to be able to retrieve metrics relevant to the application under investigation – an
application that may be operating across multiple nodes over the device-edge-cloud continuum.

In Figure 26, we see the role of monitoring in application adaptation.

Figure 26: Monitoring high level metrics while supporting interrogation of low-level for adaptation

We propose to use the Prometheus and its Alert Manager to trigger examinations of lower-level
metrics when SLA-breaking conditions are observed with higher-level Fitness Measurements. The
actual mechanics of how QMode updates are relayed to the Service Mesh is still under investigation
and is a topic we will return to when discussing Early Investigative Work later in this section.

4.3.5 Planning & Execution

When analysis of ongoing monitoring reveals the occurrence of conditions warranting a QMode
change then an alert is raised and relayed to the Prometheus Alert Manager. The Alert Manager in
turn publishes the alert.

The logical QMode Switch we referred to earlier routes to a particular application configuration based
on the current value for the QMode associated with the application. Applied at the global system level,
this would have a sledgehammer effect. We need to be lighter handed and enable QMode changes to
apply to a subset of user sessions.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 50 of 91

4.3.5.1 User-Level routing

To support user/session level granularity then the switch needs awareness about the user associated
with a given request.

Figure 27: QMode Routing

The proposed solution lies in associating a QMode tag with each user session and having a particular
application configuration to be employed for a given QMode tag. Adapting an application
fundamentally entails instantiating a variant of the application, having it run side by side with the
original while it prepares itself to accept traffic, and then switching live traffic to the variant so that we
can retire the original. Below we depict a snapshot in time when it has been decided to swap the user
to a lower-resource-consuming variation of the application and are ready to switch the traffic over.

Figure 28: Application about to switch over to application variation that consumes less resources

Note in the scenario depicted above that not all services in the application are reconfigured. We can
see that M2 is unchanged. There should be no need to start another copy of M2 and we should keep
using the already running M2. The configurations of M1 and M3 have changed however and new
instances of these services will be started and introduced.

4.3.5.2 QMode Switching

As introduced earlier when discussing Service Routing, we propose to use a Service Mesh for managing
unobtrusive intra-application routing changes. Each service is deployed into a Kubernetes Pod along
with a sidecar proxy that mediates all network traffic. Pods are tagged with the QModes that they
support. In Figure 28 we depicted how our application instance was modified through reconfiguration
of Services M1 (moving from Default Config to M1V1 Config) and M3 (moving from default to M3V1
config). Table 16 summarizes the necessary reconfiguration required within our application to target
differing QModes.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 51 of 91

This Service Should be using this Configuration When we seek to offer this QMode

M1 DEFAULT HIGH

M1V1 MEDIUM

M2 DEFAULT

HIGH

MEDIUM

M3 DEFAULT HIGH

M3V1 MEDIUM

Table 16: Configuration changes mapping to QMode targets

In Figure 29 the corresponding Kubernetes Pod layout in which we capture the point in time at which
Pods have been launched to support both QModes and the sidecar proxies within each Pod select the
next Pod to route based on the current value of QMode associated with the client and the tags
attached to the Pods.

Figure 29: Kubernetes Pods manage service variations and are threaded together through tagging and sidecar
proxies

4.4 Early Investigative Work

4.4.1 Service Mesh Routing

The sidecar proxies involved in a service chain need to have a common view of the current QMode
value.

Figure 30: QMode synchronization and propagation

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 52 of 91

Initial approaches involved injecting the tag at the client ingress point and then piggybacking this tag
along the service chain. While promising in a purely cloud native scenario in which all inter-service
communication occurs using http, it became increasingly clear that the approach would prove lacking
when having to deal with a wider range of communication protocols and payload formats. Subsequent
approaches moved away from the piggyback approach to one in which the sidecars could reference
(or be updated by) an external service or repository from which it could obtain the current QMode
value.

Various strategies for injecting the QMode value have been considered:

1. Istio header-based routing
2. Envoy header-to-metadata filter
3. Custom Envoy filters
4. External Routing Logic
5. WASM Plugins

4.4.1.1 Istio Solution

This approach utilizes Header-based routing, which entails defining routing rules to be activated
depending on specific field values in a request’s header. Several Istio resources can be used to
implement such a solution. A VirtualService is applied to route traffic to different subsets that match
a value in the quality tag in the request header. A DestinationRule is used to define a subset for each
configuration/version of each application.

With an intuitive configuration scheme, this solution enjoys the benefit of being straightforward for
providers to deploy applications. This solution is also manageable in large-scale scenarios as scaling
doesn’t require any kind of canary deployments.

This approach was evaluated with a rudimentary scenario in a Kubernetes environment, which
contains:

• A web server (httpbin)
o httpbin-high – version optimized for high resource availability
o httpbin-low – version optimized for low resource availability

• A web client (sleep)

httpbin is deployed as a single service but with two different instances, one for each configuration.
Each instance is configured to have a quality label in the metadata field. This label will later be used by
Istio’s resource to define the routing rules. The sleep application will be deployed with no special
configuration. Subsequently, a VirtualService is configured to define routes to each version of the
httpbin, based on a quality field set in the request’s header. The VirtualService will match the preset
routing rules to the value in the quality tag, and thus route traffic to a defined subset. This subset is
defined in the DestinationRule, which declares two subsets for the httpbinservice: high and low. To
each subset, a label is assigned, which is the same label assigned to each httpbin configuration.
Therefore, this collection of resources allows for traffic to be routed to the high version of the httpbin
service when the request is tagged with the high-quality value and the same goes for the low version.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 53 of 91

Figure 31: Header-based routing

As seen in the figure above, both versions of the same application co-exist, but traffic is routed to each
of them based on the value of the quality tag in the request’s header. This is configured in the
VirtualService and DestinationRule resources. This solution is not restricted to only two routes or two
versions of a single application and is extensible to any number.

This form of routing algorithm can be coupled to a more intelligent system that is responsible for
performing health checks, hence approximating a load balancer’s behaviour. Since these routing rules
are unchangeable, traffic tagged with the low value must always be routed to the low version of an
application, load balancing does not need to be considered in this implementation. The intelligent load
balancing component is the one tasked with injecting the quality header, that will later be used for
header-based routing.

Initial experimentations included the creation of dummy services, that act as a front for real services
and enable the routing traffic according to tag value. The following scenario was implemented:

Figure 32: Scenario implemented with Istio header tagging

In this type of architecture, service B will be able to route both pods B-X and B-Y, just depending on
the value of the tag/header. Each is configured for different types of conditions (high and low resource
levels), and the value on the header of the request performed by service is used by a VirtualService to
route to subset high -> B-X or to subset low -> B-Y.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 54 of 91

Figure 33: Configuration of routing logic

Upon applying this configuration, we can see that traffic does indeed get routed according to the tag
value as captured below in Figure 34.

Figure 34: Communication with the httpbin service - high version of the app

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 55 of 91

Figure 35: Communication with the httpbin service - low version of the app

Figure 34 and Figure 35 show the results of the experiment. As you can see, when inserting the tag
“quality: low“, the traffic is forwarded to the low version of the app, and when inserting the tag
“quality: high”, traffic is forwarded to the high version.

4.4.1.2 Standard Envoy Filters

Early investigations explored using standard Envoy filters used to perform Load Balancing. Istio’s
EnvoyFilter resources allow one to modify the configuration of the Istio proxy sidecars (Envoy). We can
use Envoy’s Header to Metadata filter, which enables us to extract values from HTTP headers and
attach them to a request’s dynamic metadata, which in turn can be used for matching endpoints.

To accomplish this, we inject a header “quality” attribute into incoming HTTP requests. When
traversing proxies, traffic will be routed to hosts whose associated metadata matches the value of the
quality header, which is extracted and attached as request metadata. Hosts will be manually
configured with specific metadata, in a sense, with the key-value pair: <quality, value>.

Figure 36: Leveraging Envoy filters and Load Balancing functionality

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 56 of 91

A disadvantage of this approach is that it will not support dynamic traffic distribution schemes. It
requires defining a set of routing rules or load balancing decisions, and therefore, configuration is
hardcoded and static. In a sense, it’s only dynamic because traffic is not known until the tag is injected.
If a particular application modifies the number of supported configurations, a new host must be
configured along with its metadata. This further adds complexity and suffers from scalability
limitations.

If we also consider that routes can be set dynamically (not chosen from a preconfigured list), we must
designate that task to a component of the framework. This requires support of the scenario in which
hosted applications interact with the mesh configuration, which is not only increasingly complex, but
also raises clear security concerns.

This approach considers HTTP traffic only, not addressing the several other communication protocols
commonly used within applications. Furthermore, we must not forget that Envoy may not provide
configuration APIs for a range of protocols. As such, additional techniques and filters are being
researched to assure compatibility with every protocol and to be used in conjunction with the filter
Header-To-Metadata.

4.4.1.3 Custom Envoy Filters

This approach follows the same principle as the previous one but using custom, user-defined filters.
This entails developing a filter that performs tag extraction in our specific, tailored fashion. This suffers
from the same disadvantages as the standard Envoy filters discussed in the previous section but does,
however, remedy one of its problems - the lack of a protocol-agnostic approach. With this approach,
the custom filter can be developed in such a way that the tag extraction is performed differently with
respect to the communication protocol. In this manner, we would only need this one filter for every
situation, and not need to concern ourselves about compatibility issues and working with multiple
features for the same task. We could avoid over-reliance on Envoy’s out-of-the-box capabilities.

Integrating a custom filter requires close integration into the Envoy codebase and this is problematic.
We would be burdened with maintaining a close watch on future Envoy releases to ensure that our
own filter remains compatible and functional.

4.4.1.4 External Routing Logic

An external routing logic approach consists of delegating load balancing decisions. This approach takes
inspiration in the way OPA20 is built, in which policy enforcement decisions are transferred from Envoy
(and Istio) to an external entity. An external component could therefore be tasked with extracting a
tag from ongoing traffic and possibly making a routing decision with respect to an internal list of hosts
and respective metadata. This decision would be relayed back to the proxy and load balancing
performed.

This approach is summarized below and is still at an early stage of analysis. A number of variations are
being considered.

20 Open Policy Agent – opensource framework for managing policies in a cloud native architecture –
openpolicyagent.org

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 57 of 91

Figure 37: Delegating decisions from proxies to external service

4.4.1.5 WASM Plugins

This approach consists of utilizing a Web Assembly plugin to perform the routing logic. WASM plugins
allow us to extend Istio proxies’ (Envoy) capabilities. The core idea is to implement a plugin to extract
the tag from ongoing traffic and in some way perform load balancing upon the extracted tag.
Furthermore, it can also be considered as the underlying technology of the mechanism for injecting
quality-regarding tags into the traffic payload. Initially, we started by implementing a WASM plugin for
intercepting traffic and displaying information about it, and are currently investigating new iterations
to this component.

This approach is very similar to the custom envoy filter, although they differ in a very important aspect
- dependencies. Because the WASM plugin does not depend on the Envoy source code, it’s completely
independent and its development lifecycle will not interfere with Envoy’s release lifecycle. We also
don’t have to worry about obscure configuration aspects and are properly decoupling responsibilities
and concerns.

4.4.1.6 Comments on current progress

Much of our thinking has been formed around the principle of injecting some form of metadata into
the client request and propagate this metadata through the service chain. This is conceptually rather
clean as we avoid every proxy having to lookup some external source to check the QMode and we are
guaranteed all services in a call chain for a given request see the same QMode setting.

An alternative approach is also under consideration in which sidecar proxies act as QMode change
consumers to a single Source of Truth associated with the user session a given application is operating
in. In this model, proxies would subscribe to QMode changes. We avoid the propagation of metadata
and, potentially, examination of protocol traffic leading to a more flexible and protocol agnostic
approach. This approach entails some additional complexities (e.g., filters run on demand instead of
constantly, where do we persist QMode value to avoid constant consults to the Source of Truth for
every message, how does this work in a distributed topology).

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 58 of 91

Recent investigations carried out with the approaches of external routing logic and WASM plugins
provide a highly promising avenue to pursue this model and work is continuing in this direction.

4.4.2 Adaptation Tactics

To tease out the kind of adaptivity space that may be available to an unmodified application we
examined a use case in depth – the Collins Aerospace Flight Simulator (UC3-2 Manned-Unmanned
Operations Trainer Application). We sought to discover whether purely configurational changes could
be identified that would equip us with tactics that we could bring into play to deal with resource
deficiencies observed from resource monitoring (see Figure 38).

We can observe how the same tactic can be used in multiple scenarios. Tactics 1 and 2, for example,
can be brought into play if we need to reduce bandwidth needs between the edge and cloud or free
up compute resources on the cloud.

It became clear during analysis that changing the configuration of one service regularly requires
changes to others to compensate or adapt to the new execution landscape. We cannot just lower the
resolution generated on the cloud in isolation as the end user would experience a catastrophic drop in
their Quality of Experience. We must simultaneously enable resolution upscaling on the edge on
compensate. We see this need to deal with collateral effects of changes to how a single service
operates repeated elsewhere.

Naturally, not all applications can lower their resolution on the cloud and have the necessary
allowances in their design to compensate through upscaling elsewhere. Indeed, we expect other
applications to have opportunities not offered by the flight simulator and we expect further insights
into adaptability tactics as we continue our investigations with other use cases.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive and network-aware services (preliminary)

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 59 of 91

Figure 38: Configurability options to deliver adaptability tactics

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 60 of 91

5 Enabling XR technologies under development

5.1 Migrating from on-premise to on-cloud

For Collins Aerospace, the vision of CHARITY to enable highly efficient network slices spanning the
domains of Cloud providers, Edge infrastructure and local resources inspired a radical re-imagining of
what could be achieved in terms of real-time, interactive XR streaming on the cloud. The traditional
approach to flight simulators has been to deploy sufficient compute and storage resources alongside
2D fixed screens to deliver on the stringent quality demands of a certification-grade simulator. Scaling
up or down is essentially constrained to vertical scaling in which we use more powerful or less powerful
hardware as the deployment dictates. In Figure 39 below, we depict three sample deployment
configurations

Figure 39: Some deployment models for the existing flight simulator

As presented in Figure 40, the traditional approach is somewhat monolithic in terms of deployment
flexibility. Multiple flight simulators co-located on the same site have no interaction or resource
sharing and each operates independently on its own dedicated hardware.

Figure 40: Existing deployment options revolve around a monolithic approach

The current deployment model presents a variety of challenges as outlined below in Table 17 .

Table 17: Challenges presented by the traditional deployment model

Challenges

Each user requires their own full rig – dimension
site hardware up front for max number of
simultaneous users

MS Windows focused

No sharing of resources between rigs Strict latency demands

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 61 of 91

Software updates are problematic – especially
tiles database which is very large

Specialized scenery generator coupled with
flight dynamics

Hardware updates are problematic Difficult to scale

Sense of immersion with low-end rig is poor Licensing complicates experimentation on third
party edge/cloud

No centralized monitoring (across users)

At the outset, these considerations drove our decision to rethink the flight simulator architecture, to
work in a distributed manner with the ability to leverage the CHARITY platform. We envisaged clear
benefits that a redesign should bring as outlined below in Table 18.

Table 18: Target benefits from redesign

Benefits

Greatly reduced local hardware footprint User & session management, simulator federation

Edge and cloud resources shared between
simulators

Monitoring framework integration

Tiles database and rendering engines can be
updated on the cloud

Improved versatility through Microservices with
Docker containers

Hardware upgrades simplified Caching with lookahead rendering to manage delays

Improved sense of immersion Pluggable scenery generator -> flightgear

Improved Scalability Headless remote rendering for remote computation
and local display

Pluggable upscaling Customizable latency compensation tactics available

5.1.1 The Latency Challenge

Operating a commercial Flight Simulator requires speed and consistency. The turnaround budgets are
tight. In deploying to the cloud, we take an already demanding problem that is currently addressed
using dedicated local hardware and network resources and exacerbate it by distributing resources
across large distances as summarized below in Figure 41.

Figure 41: Motion To Photon budgets become even more demanding with XR and the cloud

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 62 of 91

In 2018, Collins conducted internal experiments assessing the viability of cloud hosted flight simulation
[23]. The findings revealed significant challenges that needed to be overcome with respect to network
latency and jitter:

• Network Latency is a significant obstacle “Transport delays vary widely based on network
topology, provider, virtual private network, user-to-cloud distance, and other factors”

• Sporadic variations in rendering times can result in stalls “cloud-based computing model will
require stringent provisioning of shared resources to provide the kind of performance and
determinism guarantees users expect”

The experiments were predicated on the display of scenery on two dimensional monitors – not XR
headsets which have far more demanding latency budgets. It was clear from the early stages of the
CHARITY project that we were facing significant challenges that could be alleviated but not solved
entirely by the CHARITY platform alone. The physics of distance needed to be tackled.

5.1.2 Tackling XR Latency

A key observation about latency budgets in XR is that there are different types – rotational and
translational as shown below in Figure 42. The charts on the right portray how latency demands are
dependent on the nature of the user activity [25] and we superimposed the position that scenery
generation for a flight simulator would occupy.

Figure 42: The latency budget available depends on the activity

Updates caused by the user rotating their head need to be very fast (< 20ms) to prevent nausea for a
significant proportion of the population. However, in [24] the authors note that translation motion
delays of 100-200ms are “non-trivial to notice”. For the flight simulator scenario, we have a user that
sits within a virtual cabin and is able to look out the window at synthetically generated scenery. If the
user turns their head then the local view inside the cabin needs to update quickly. The outside view
only changes with the movement of the simulated aircraft itself (which alters course slowly in response
to user actions). We propose to leverage this dichotomy to move the generation of synthetic scenery
seen through the cabin windows to the cloud while keeping the rendering of the cabin itself local.

5.1.2.1 Prediction to extend the latency budget

If we detach the world outside a simulated aircraft cabin from the world inside then an additional
opportunity presents itself to further extend our latency budget. As pointed out previously, the out-
the-window view updates in accordance with movement of the aircraft. Aircraft possess nothing like
the rapid freedom of movement of a human pilot. Its position within the seconds ahead should be
predictable with a high degree of accuracy. This presents the opportunity to render what we need
ahead of time on the cloud and cache it locally to enable what Google have referred to as Negative
Latency [27] – a variation of which they employed in the Google Stadia platform.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 63 of 91

Figure 43: Movement of an aircraft can be predicted to enable pre-rendering if scenery ahead of time

By caching at the edge, our goal is to detach the cloud from the stringent motion-to-photon loop to
reduce the latency and jitter that would otherwise be experienced with cloud rendering in the real-
time chain.

5.1.2.2 The Frame Rate Challenge

As witnessed by the steadily increasing refresh rates of XR headwear, high frame rates are seen as an
essential component of an acceptable XR user experience. Regardless of what is deemed to be an
acceptable rate of frames per second – 30, 60, 90, 120 – we assume that the originator of the media
stream must generate that rate. If we want to attain 90FPS with flight scenery, then must we render
90FPS in the cloud and ship back to the nearest cache? As with modern televisions, frame interpolation
has become standard functionality in XR headsets. The manufacturers of such headset want to avoid
inconsistent or below-par frame rates emanating from media sources to result in compromised
experience for the user who may attribute blame to the headset itself. XR headsets need a consistent
frame rate. If they don’t get it, then they use predictions cached locally on the headset to backfill any
missing frames. We observe functionality termed Asynchronous Timewarp and Spacewarp [26] in the
Oculus headsets and Motion Smoothing in SteamVR headsets.

Instead of the XR experience imposing more stringent quality demands than conventional 2D monitors,
we propose to explore using the stabilization technology built into XR headsets to our advantage. It
gives us the option of generating a lower frame rate on the cloud when resourcing pressures preclude
us from either rendering the required frame rate due to computational resource stresses or from
delivering the required frame rate to the edge due to bandwidth stresses.

5.1.2.3 The Pixel Resolution Challenge

As consumer XR headsets evolve to target 4K or 8K resolutions, there is a growing imperative on the
part of media stream producers to render higher and higher resolution imagery. This has significant
repercussions for bandwidth as 4k resolution requires an order of magnitude more bandwidth than
High Definition (approx. 15Mbps versus 1.5Mbps). As with frame rate, we assume that the originator
of the media stream must generate the required resolution. Modern TVs and games consoles need to
deliver a high-resolution viewing experience even when the source of frames is of low resolution. To
accomplish this, they employ upscaling algorithms to ‘fill out’ the missing pixels. We propose to
integrate a resolution upscaling component into our streaming pipeline to cater for scenarios in which
we cannot render high resolution imagery on the cloud for reasons of resource availability (compute
or network bandwidth). Lower resolution frames will be received at the Edge and upscaled as
appropriate.

5.1.3 Towards Cloud Native

We began our journey with a monolithic platform that was not amenable to distributed deployment
and execution. We proceeded to redesign the platform and move towards a cloud native architecture.
As can be seen below in Figure 44, we decomposed the platform into self-contained microservices.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 64 of 91

Figure 44: Flight Simulator redesigned as cloud native

The new architecture better reflects modern application design and gives us the opportunity to
leverage core features of the CHARITY platform that would have been difficult and far more restricted
with the original design such as the CHARITY service mesh for application adaptation, monitoring and
alerting, dynamic deployment and orchestration. Crucially, it brings options and mechanisms to
explore distributed deployment across the edge and cloud.

5.2 Dissection of the Unity3D Physics engine

ORAMA’s commercial gamified multi-user VR medical training platform is built using the MAGES SDK
on top of the Unity3D game engine. Exploiting Unity3D’s network layer, the MAGES SDK handles and
synchronises in-game interactions, deformable object transformations and physics simulation by
broadcasting transformation values over the network.  Under the hood, as part of the MAGES SDK, the
custom Geometric Algebra interpolation engine is utilised for efficient network transmission and local
interpolation of in-between positions/rotations for each end-device (HMD). The architectural design
of ORAMA’s training applications involves a single application component, installed and run on
untethered HMDs, that employ local processes for storage, rendering, and physics deformations.

An experimental architecture, based on MAGES SDK, allows the transition to an Edge-Cloud
application, upscaling to collaborative cloud VR training applications specially formulated for
untethered HMDs. The goal of this R&D version of ORAMA’s training application is to optimize the
status of the cooperative mode in terms of lower latency, higher performance on average network
conditions, and, ultimately, higher number of CCUs. This new approach, realized through computation
offloading of the entire ORAMA’s application in edge-cloud resources, requires interactions and data
exchanges between the different modules placed on device, and services on Edge-Cloud.

ORAMA is currently designing and developing the required technologies and solutions to support its
advanced media applications by exploiting methods and techniques for the dissection of the Unity
physics simulation engine as a separate VM microservice that will run on the Edge-Cloud. Methods and
techniques regarding multi-threaded rendering and physics in Unity are also being investigated.

5.2.1 Dissection of Physics Simulation Engine

Currently, a typical Unity3D game engine pipeline involves simultaneous execution of CPU physics-
related calculations along with GPU calculations related to the rendering of the scene.

In this section, we provide an overview of how a dissection of the physics and the scene-rendering
pipeline can be achieved. Although a distributed application architecture usually decreases running
times, an unoptimized dissection may lead to increased latency, since there are numerous inter-calls

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 65 of 91

between the physics engine and the renderer. In the case of a desktop-VR local network system setup,
the dissection is feasible and almost straightforward. However, in the case of a mobile-VR edge-cloud
setup the physics engine dissection is rather challenging. ORAMA is currently investigating methods
and techniques that will assist such a potential dissection and allow the physics simulation engine to
be run as a separate edge-cloud, possibly containerized, microservice.

5.2.2 Methodology – Notation

The dissected Unity3D pipeline involves two, bidirectionally communicating, components:

• The Host (Game Logic and Graphics rendering), and

• The Physics Server (Physics simulations).

The Host includes the entire Unity3D pipeline, along with its own, local, physics engine. Main goal of
the dissected Unity3D pipeline is to allow any GameObject on the scene to be fully simulated by the
dissected Physics Server and not by the Host’s local physics engine.
For the reader’s convenience, we define below some terms used throughout the dissection overview.

• Graphics Object: A Game Object component, with no physics-related scripts and data residing
within the Host. Any Game Object may be converted into a Graphics Object by detecting and
removing all physics-related parameters (colliders, rigid bodies, etc.) attached to it. The
removed parameters are stored temporarily in order to be sent to the Physics Server in the
form of a Physics Object (see below).

• Physics Object: A Game Object component, responsible for storing all physics parameters. It
has attached a Rigid Body script, a Collider script, or a combination of the two. When initialised,
however, it generates physics components based on this data and is responsible for updating
these components whenever a change occurs. The data is not editable in the Physics Server,
only by the host, since the Host side is responsible for manipulating physics parameters.

• Remote Game Object: Since the above two components use different ways of storing their
data (Physics or Graphics Objects) we need a way for them to communicate. The Remote Game
Object, a data structure containing all shared data between Physics and Graphics objects
(Transform, Collision Events), is used to forward Graphics Objects updates to the respective
Physics Objects, or vice versa.

• Graphics/Physics Client: These services are listeners responsible for all communications and
orchestration on either the Host or Physics Server side. They apply all incoming changes on all
Graphics/Physics Objects and sends all outgoing changes in the form of Remote Game
Objects.

5.2.3 Methodology - Overview

5.2.3.1 Communication of the two Components

The main two components, i.e., the Host and the physics server, communicate via network using TCP
and UDP connections, exchanging messages in JSON format. The TCP connection is used for the
exchange of more critical information, such as the creation of an object or the modification of a critical
parameter. The UDP connection is used to transmit real-time data, like the object transformations or
time-critical data, such as collision events. For the convenience of the reader, we shall refer to these
communication methods as Reliable (TCP) and Unreliable (UDP). Of course, these transmission
protocols can be substituted for a more domain specific networking solution.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 66 of 91

5.2.3.2 Splitting a Game Object into a Graphics and a Physics Object

After a successful connection, the Host’s game objects are split into Graphics objects, which remain in
the Host, and Physics Objects, which are created in the Physics Server. This is accomplished by
transferring the physics attributes, such as Colliders and Rigidbodies, from each of the Host’s game
objects, to the Physics server, that creates Physics objects with the same parameters. The Physics
Server retains no knowledge regarding the Host’s scene, the game loop or the behaviours, and is only
for simulating the physics of all Game Objects in the scene.

During gameplay, the transformations of the Host’s Graphics Object are synchronized with the
respective Physics Server Physics Object. The Game Object’s transformations can either be controlled
entirely by the Physics Server, or by the Host. In the latter case, the Physics simulation continues and
the controlled Physics Object interacts with the rest of the Physics Objects as expected.

5.2.4 Implementation

5.2.4.1 Initial Setup

With the successful initiation of the Physics Server, the Physics Client starts listening for messages on
specific ports. At this stage, any Host can connect to it and provide Game Objects for physics
calculations.

After the Host’s successful initialization, its Graphics Client scans all Game Objects in the scene for
Physics objects and converts them into Graphics Objects. The Physics components, attached to those
Game Objects, are subsequently collected and sent to the Physics Server as Remote Game Objects.
The Physics Server then converts and instantiates them as Physics Objects.

5.2.4.2 Game Object creation after Initialization

A new Game Object, spawned in the Host, is initially attached to all of its Physics components, and
subsequently it goes through the same conversion process, to Graphics and Physics Object, described
in the initialization subsection.

5.2.4.3 Simulation and Gameplay

After the Graphics Objects are successfully copied from the Host to the Physics Server, their
transformations will be synchronised using unreliable transport. Depending on the developer’s choice,
the transformations of a Game Object can be either controlled by the Host or the Physics Server. In
both cases, the Physics simulation is always running, and no components are deactivated. When a
Graphics Object is translated by the Host, the corresponding Physics Object is also translated using
Physics calculations and not direct transformation changes so that the simulation is accurate and
ensuring that no undesirable object clipping occurs. Besides simply changing the transformations, the
Host can change all parameters of the Graphics Object which, depending on the type of data, are to
be sent to the Physics Server using a reliable or unreliable transmission method. In that respect, time-
sensitive parameters are usually sent using the unreliable connection; those that must definitely reach
the Physics Server (such as Gravity) are instead sent using a reliable connection.

5.2.4.4 Collision Detection

When collisions happen, the Physics Objects provide the Graphics Objects with the identifier of the
collided Game Object. The well-known Unity3D events OnCollisionEnter, OnCollisionStay and
OnCollisionExit are accessible via the Graphics Objects and can be subscribed to and used as expected
on the Host side.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 67 of 91

5.2.5 Lab Testing

The testing process was performed in three stages: a) Initial testing, b) Synthetic testing and c) In-vivo
testing.

5.2.5.1 Initial testing

The dissected pipeline was deployed and tested on two separate machines connected to the same
network, one via Ethernet and one via Wi-Fi. Main objective of the tests was to measure the subjective
and objective performance of the actual system based on different network quality. The initial testing
scenarios involved one or multiple Physics objects, defined as GameObjects, with 1 Rigidbody and 1
BoxCollider component. The conducted tests also involved the compression of the exchanged data
between the two network components. For compression, the GNU GZip, which is based on the Deflate
algorithm, is used. Following is the list of the used testing scenarios:

1. Stress testing on the number of objects able to be synchronised using no compression.
2. Stress testing on the number of objects able to be synchronised using compression.
3. Random transformation of 1 Physics object using no compression.
4. Random Transformation of 1 Physics object using compression.
5. Random Transformation of 10 Physics objects using no compression.
6. Random Transformation of 10 Physics objects using compression.

Stress testing with no compression, showed that the system is able to synchronise the simultaneous
transformations of at most 28 Physics objects. Beyond that, the internal network buffer is overflown.
Overcoming this limitation without reducing the packet size is not currently feasible.

On the other hand, when data compression is used, the system is able to synchronize over 480
simultaneously transformed Physics objects. The system’s performance started degrading for cases
with over 200 Physics objects and, in cases with over 480 Physics objects, it was almost unusable. The
internal network buffer did not overflow in any case.

Table 19 provides the results of tests 3-6.

Table 19: Testing scenario – results

1 object

compressed
1 object

uncompressed
10 objects

compressed
10 objects

uncompressed

TCP

Average Packet
Size (bytes)

1114 2850 1705 16105

Maximum Packet
Size (bytes)

1288 4240 2256 23946

Minimum Packet
Size (bytes)

912 2062 912 2062

Average Packet
Delay (ms)

0.0988 0.0981 0.1003 0.0734

Packet Loss (%) 0 0 0 0

UDP

Average Packet
Size (bytes)

1175 2252 2643 22364

Maximum Packet
Size (bytes)

1204 2264 2740 22435

Minimum Packet
Size (bytes)

1132 2240 2248 22299

Average Packet
Delay (ms)

0.0842 0.0842 0.0504 0.0363

Packet Loss (%) 0.15 0.15 0.26 0.23

Based on above results, we can safely conclude that compression reduces the size of the packets such

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 68 of 91

that more simultaneously Remote Game Objects are allowed. This reinforces our findings, regarding
the limit of simultaneous physics objects and the effectiveness of compression.

The network usage, when synchronizing 10 simultaneously transforming virtual Objects, without
compression, was at an average of 22.4KB/s. This metric is further improved when using compression,
averaging at 2.6KB/s.

5.2.5.2 Synthetic testing

To test the dissected Unity3D pipeline against network conditions and evaluate the visual impact on
the gameplay, we performed a synthetic testing process, where the dissected pipeline testing is
conducted in emulated network conditions. These testing results and the subjective system’s
performance will be used as reference for the actual integration testing in the selected testbed. To
eliminate any additional overhead in the emulated network conditions, that would tamper our results,
we deployed the two servers on the same machine. For the generation of synthetic network
conditions, we emulated the major network factors that mostly affect the visual performance and QoE
in real-time VR applications: a) packet loss and b) latency.

Packet Loss

Packet loss occurs in unstable network conditions, causing unsuccessful packet delivery. During testing,
packet loss of over 20% resulted in choppy movement in VR. In such cases, the visual and subjective
performance of the system depended on the object transformation rate. When the interacted object
is moved slowly by the user within the Virtual Environment, the visualized transformation result is
satisfying, even at higher package losses. When the virtual objects are transformed fast and abruptly,
the visualized transformation is noticeably jittery.

Most GameObjects in UC2-1 are interactive, representing surgical tools, whose normal use does not
involve very high transformation speeds. As such, a maximum packet loss of at most 50% is visually
acceptable. This value is the upper limit, as in real situations many other factors may impact network
conditions, that would affect negatively the system’s QoE. In any case, a packet loss of less than 20%
would provide a stable QoE. Table 20 provides a summary of the visual feedback results against the
used synthetic packet loss.

Table 20: QoE vs Packet loss

Packet Loss Visual Feedback

5% Good QoE.

20% Intermediate QoE when the user moves virtual objects fast and abruptly; marginal good
QoE during a normal gameplay.

50% Intermediate QoE during normal gameplay, but acceptable for short periods of time; for
longer periods of time QoE can get annoying or distracting.

80% Bad QoE; the training scenario is unplayable. Objects feel like they teleport randomly
instead of moving in the scene.

Latency
Network latency is defined as the time that takes a packet to be transmitted to the target client, often
causing a significant delay projecting the visual output of the system. Increased latency in distributed
VR systems, like the one in UC2-1, may cause bad synchronization in the VR HMD, between user
hand/head actions and the respective image projection. This delay is not constant, causing packets to
be possibly received out of order, resulting in a jittering visual effect. Introduced latency during testing
sessions, caused a significant visual impact even at smaller latency values. Table 21 provides a summary
of the visual feedback results against the used synthetic latency.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 69 of 91

Table 21: QoE vs Latency

Latency Visual feedback

50ms Intermediate QoE; Slightly noticeable jittering - when user moves virtual objects
slowly, intermediate jittering can be more obvious.

100ms Bad QoE; Jittering very noticeable - the object jitters a lot and feels unstable.

200ms Unplayable and very annoying to use.

5.2.5.3 In-Vivo testing

In order to prepare the system for testbed deployment, we conducted tests over the internet with a
remote computer.

Initially, the system could not be deployed due to the large number of UDP packets exchanged by the
two servers, causing the ISP’s firewall to block all outgoing and incoming connections. This was solved
by sending packets less frequently compared to a local network setup. As such, many packets were not
transmitted, introducing additional perceived latency and packet loss to the system.

The packet send-rate was initially set to 100ms, which is the maximum playable latency determined
during synthetic testing, producing similar visual results, without generating anymore the jitter caused
by out-of-order packets. Although, this slightly improved QoE caused less distraction to the user, the
virtual objects movements lagged behind significantly, producing extremely jittery movements. The
firewall issue and its resolution, kept the aggregated perceived latency permanently over 20ms. After
thorough experimentation, we determined that the ideal send-rate is 50ms, which provided the most
stable experience with average QoE and without overloading the connection. Table 22 summarizes the
data gathered using the UDP connection and its stability.

Table 22: UDP connection results

Packet Loss Average Latency Average Packet Size

6.5% 237ms 12452 bytes

The large network latency recorded in the in-Vivo testing is the main reason for the significant delay in
user’s actions. Packet size was relatively small, with room for improvement using compression,
however it was well within reason, as network usage remained under 10Mb/s.

Due to the unstable network conditions, in-Vivo testing of the entire medical training session was
impossible. The TCP connection often dropped and the current implementation does not anticipate
failed TCP connections. Further in-Vivo testing will be conducted after the respective modifications are
applied.

5.2.6 QoE Subjective remarks

During gameplay, whenever the network quality falls below a threshold, there were two issues that
were especially noticeable. First, when directly interacting with objects in VR, the network latency
causes the objects to feel “squishy”, since the user’s hand that pushes the object would initially
penetrate inside the object and after some milliseconds the object would react to the push and move
away. Secondly, when there is a high amount of packet loss, some objects tend to “flicker” between
two positions. This issue is not very common as it is not experienced every time network conditions
deteriorate. The first issue, however, is rather common, but not distracting from the gameplay in a
severe way.

5.2.7 How Compression affects performance

We can measure the impact of the compression algorithm on the system’s performance by utilising

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 70 of 91

the Unity3D profiler. The scenario to measure the system’s performance, included the random
translation of 10 Physics Objects.

When compression is not used, the generation of a frame takes approximately 20ms to be
executed, sometimes spiking up to 33ms. On the other hand, when compression is used, a frame takes
an average of 21ms to be generated, with some higher spikes at 34ms. These spikes occur since
sending/receiving packets happens asynchronously. We conclude that both compressing and
decompressing packets adds around 1ms to frame rendering times.

When more Physics Objects were used, the compression/decompression had a linear performance
impact (20 objects added 2ms to no compression, 30 objects added 3ms).

The compression method used is not a domain specific solution for game engines so, in a more realistic
scenario where one would make use of third-party solutions (such as Oodle Networking), it is expected
that the average frame-time will not be severely impacted.

5.2.8 Conclusions - Future Work

The work in this section has shown that the dissection of the Unity3D pipeline is feasible, yet
dependent on the network characteristics between the Host and the Physics server. The conducted
tests helped the derivation of the network latency and packet loss thresholds, below which we can
achieve a pleasant QoE to the VR medical training application. These thresholds should not be
exceeded by the provided testbed network.

Although docker containers outperform VMs in the case of space and processing overhead, they are
rather immature in graphics acceleration processes. In this case, the use of VMs is far more
advantageous since they have highly optimized graphics drivers and kvm passthrough support.
Additionally, docker containers have limited graphics drivers support, since only experimental versions
(for all vendors) for Linux are currently available. As such, the porting of the Host, that exploits GPU
resources for rendering, into docker container is a rather error prone procedure.

On the other hand, the Physics engine, exploits CPU resources for the physics computations. In the
next period, we will work towards porting the Physics engine into docker container. Additionally, to
improve the computational latency of the Physics server, we will investigate optimizing the physics
computations in Unity3D.

5.3 Investigating Multi-threaded rendering in the Unity3D game engine

Multi-threading exploits a CPU’s capability of processing many threads concurrently across many
cores. A multi-threading program always starts in one main thread, which subsequently creates new
threads that run in parallel. Upon completion, these threads usually synchronise their results with the
main thread.

The generation of more concurrent threads than the available CPU cores, leads to a concurrent sharing
of CPU resources among the threads, which causes frequent, resource-intensive, context switching. As
such, the multi-threading approach always suits cases with a few long-life tasks. Game Engine pipelines
mostly deal with many short-life unrelated tasks that execute at once. Multi-threading in such systems
often results with a large number of short-life threads that challenge the CPU’s and operating system’s
processing capacity, due to frequent creation and destruction of threads for short-lived tasks. The
employment of a pool of threads, often mitigates this issue, increasing performance and avoiding
latency in execution. However, even this solution does not always prevent a large number of
concurrent active threads.

Multi-threaded programming faces high risks for race conditions which often produce significant
challenges. A race condition occurs when the output of one task depends on the timing of another
process outside of its control. This issue may be a source of crashes, deadlocks, incorrect output, and
generally non-deterministic behaviour that produce non accurate rendering or simulations. As the
cause of these problems depends on timing, the recreation of the issue could happen on rare

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 71 of 91

occasions, making debugging a cumbersome process. Debugging tools, such as breakpoints and
logging, often change the timing of individual threads, causing the problem to falsely disappear.

In the frame of taking advantage of the edge-cloud resources parallel processing, methods and
techniques for parallel/multi-threading Rendering and Physics in Unity3D will be explored. Unity3D
supports multi-threaded math calculations and, in this regard, we will seek to exploit parallelization
techniques for various sub-tasks, such as the skinning algorithms. Furthermore, Unity3D supports a
limited form of multi-threaded rendering by utilising specific graphics API implementations or through
the utilisation of Graphics Jobs System.

5.3.1 Single-threaded Rendering

Unity3D mainly features a single client occupying the main thread with the execution of the high-level
rendering commands. The client also owns the real graphics device GfxDevice and performs the actual
rendering through the underlying graphics API (GCMD) on the main thread.

5.3.2 Unity3D Multi-threading Built-in System

Multithreaded rendering in Unity, provided its graphics API permits it, is implemented as a single client,
single worker thread. This works by taking advantage of the abstract GfxDevice interface in Unity3D.
The different graphics API implementations, such as Vulkan, Metal and GLES, inherit from the
GfxDevice.

When this system is enabled, rendering calculations are performed on a separate thread, called the
RenderThread, while the rest of calculations are performed on the main game thread, namely the
MainThread.

Figure 45: Unity3D multi-threading Built-in System

5.3.3 Graphics Jobs System

The Unity3D Jobs system is not the traditional kind of multi-threading system as it manages multi-
threaded code by creating jobs instead of threads. In that frame, a game is split into small units of work
where each is responsible for one specific task. These units of work are called jobs. The Graphics Job
system manages a group of worker threads across multiple cores. It usually has one worker thread per
logical CPU core, to avoid context switching. Some cores may also be reserved for the operating system
or other dedicated applications. As the job system enqueues the generated jobs in the job queue, the
Worker threads take items from the job queue and execute them.

A job may receive parameters and operate on data in a similar way to a method call. As such they can
be self-contained, or they can depend on other jobs to complete before they can run. Once scheduled,
it cannot be interrupted. In complex systems, such as those required for game development, it is
unlikely that a job is self-contained. All jobs are usually dependent on other jobs as they prepare data
for them. The Graphics Job system supports dependencies across jobs, as it is responsible for managing
them, ensuring job execution in the appropriate order. The Unity3D C# Job System is able to detect all
race conditions, protecting the programmer from potential bugs.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 72 of 91

Writing multithreaded code can provide high-performance benefits, such as significant gains in frame
rate. Using the Burst compiler with C# jobs gives you improved quality, which also results in substantial
reduction of battery consumption on mobile devices.

Graphics Job System integrates Unity’s native job system. As such, User-written code and Unity3D
engine code share the same Worker threads, avoiding the creation of more threads than CPU cores,
which would cause contention for CPU resources.

Using the Job system, multiple native command generation threads take advantage of the graphics
APIs that support recording graphics commands (GCMD) in a native format on multiple threads. It is
implemented as multiple clients, no worker thread. This removes the performance impact of writing
and reading commands in a custom format before submitting them to the API.

Figure 46: Graphics Jobs System

Note: Currently, Graphics Jobs do not have a RenderThread to schedule jobs, causing a small amount
of overhead on the main thread for scheduling.

5.3.4 Vulkan Graphics API

By enabling Graphics Jobs and the use of the Vulkan graphics API for Windows on Unity3D, we tested
the potential increase of performance of Unity3D for our VR offloaded solution. In most cases, the
positive performance impact was minimal:

Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows

 Direct3D-11 Vulkan

Average Frame rate 45.47 fps 46.16 fps

As an additional remark, Vulkan on Unity3D proved to be more unstable than Direct3D11; in some
cases, performance dropped significantly to ~30 fps when Vulcan was enabled.

5.3.5 Conclusions

In our research we noticed that, regarding multi-threaded rendering for 3D applications, one rendering
thread is used, while many other work threads can parallelize other jobs such as physics, logic, AI, etc.
To the best of our knowledge, there is no other multi-threaded rendering solution or any other
alternative solution within Unity.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 73 of 91

5.4 Adaptive rendering algorithms for low latency immersive applications

Virtual Reality (VR) applications have gaining importance and interest over the last few years in various
fields, like as manufacturing, training, entertainment, and so on. Moreover, modern wireless
lightweight powerful Head Mounted Display (HMD), reach a high level of maturity and provides a more
immersive experience. Despite these, a high-quality level of experience is still challenging to have when
using HMD, also modern ones, because ultra-low latency (<20 ms) and high-bandwidth are required
for a comfortable, satisfying, and convincing immersive experience [30].

Several solutions have been developed by the VR research community to achieve this goal. A lot of
effort has been spent to reduce the computational burden related to the rendering. In fact, rendering
for immersive devices require at least the rendering from two different viewpoints, and in some cases
to generate a 360-degree panoramic image/video to stream accordingly to the position and orientation
of the gaze of the user. The computation of the rendering can be alleviated in different ways. Some
approaches exploit the fact that the best visual acuity is around the fovea, and exploit eye tracking to
optimize the rendering, obtaining the so-called foveat rendering. Many other solutions exploit how the
Human Visual Systems (HVS) works to reduce the quality of the rendering ensuring the same visual
perceptual quality. For example, in [31], modify the standard primitive rasterization considering some
perceptual effects to make the rasterization pipeline more efficient for HMD. Some other approaches
take into account that distant object does not require to be rendered with different disparities to be
perceived correctly. For example, in [32], a of mix stereoscopic and standard rendering is used to
generate the images to display, according to the fact that disparities are reduced for distant objects.
The experiments conducted demonstrate that this simple solution can give a satisfying experience in
many cases. Other approaches work by super-sampling the temporal line, so they create/interpolate
new frames in-between other ones to reduce the total number of images to generate. The state-of-
the-art of this type is ExtraNet [33], a deep learning network capable to double the speed of the frame
generation by extrapolating the new frame for the previous ones. The new frame is generated by
minimizing the visual artefacts that typically happen in view-dependent parts of the images (e.g.
specular reflection).

Recently, with the main goal of obtaining the VR experience for mobile devices, solutions that takes
advantage of computing the rendering at the edge are explored [34]. In this case, the total end-to-end
latency is given by the time to transmit sensor data from HMD to the edge computing node, plus the
time to render (and encode) the views on the edge node, plus the time to transmit rendered
images/video from the edge computing node to HMD, and time to (decode and) display the view on
the HMD. The encoding and decoding phases are optional and depends on the specific application. In
this setting, different strategies can be used to optimize the rendering, caching, and streaming of the
different views.

FlashBack [35], is a VR system which pre-renders all possible views on a 3D grid of suitable size, and
delivers frames according to the position and orientation of the viewers. Obviously, this is not optimal
from a caching point of view. In [36], a parallel rendering and streaming mechanisms is adopted.
Streaming latency is reduced by re-using rendering parts that remain the same during the interaction.
Long-Short Term Memory (LSTM) ([37], [38]) model and Recurrent Neural Networks (RNN) ([39], [40])
are used to estimate the head/body movements. The prediction of these movements is useful to
optimize the view generation, reducing the overall computational and improving performance.

In CHARITY, we aim to develop and integrate in one or more UCs an adaptive rendering solution to
obtain high-quality low-latency VR applications. The UCs under investigation are the UC2-1 VR Medical
Training Simulator (ORAMA) and the flight simulator, i.e. the UC3-2 Manned-Unmanned Operations
Trainer Application (CAI). The current activity has regarded the study of the state of the art to identify
the method/technique that can be easily integrated in the architectures of the UCs just mentioned.

In the next period we will study in detail the adoption of a frame extrapolation/interpolation method,
and the various correlations with UC2-1 and UC3-2 architectures, as its characteristics imply a
promising solution. After that, the implementation will start immediately. In this context a goal is to

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 74 of 91

keep the integration efforts as small as possible yet without compromising the quality of the results to
be achieved.

5.5 Point Cloud Encoding / Decoding

5.5.1 UC1-3 Holo Assistant

The CHARITY UC Holo Assistant (Figure 47) adopts the physical principles "diffraction and interference
of light" to enable real 3D holography, based on sophisticated custom optical components and
algorithms. This lays the foundation for showing a butler-like avatar in 3D space on a holographic 3D
display with true depth and true eye focus - for your eyes it is like natural viewing. The butler shall
react to natural language and assists by providing information gathered from the cloud or the internet.
Beside the 3D holographic presentation, this use case enables a lot of challenging services and new
technology to be developed and implemented in the CHARITY cloud.

The use case is focusing on a cloud-based application rendering a virtual holographic 3D assistant
including additional information and transferring / streaming the content to a local client system in a
format compatible to interference-based holography. On the client system, the content is computed
into a real-time 3D hologram and is presented on a holographic 3D display from SeeReal Technologies
(SRT). By using eye-tracking, the observer always sees the correct perspective of the holographic
assistant 3D scene. The hologram enables natural viewing for correct eye focusing and convergence to
experience true depth and natural viewing. So, the well-known accommodation convergence conflict
known from classic 3D stereo does not apply here.

Figure 47: The Holo Assistant User Case

The preferred format is a Point Cloud (PC) based format which provides following advantages over an
image-based data format like 2D+depth:

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 75 of 91

• Multiple views can be encoded acting as a cache on client side - if many views are available,
there is no missing data when data coming from the cloud is delayed

• The format becomes more effective over image based 2D+depth the more different views are
encoded

• Multiple points on one "line of sight" allow for looking around an object within one and the
same data set, but also enable transparency effects

• compared to typical point cloud formats, here is targeted to only include certain views or a
certain view range, thus the point cloud scene must not be viewed correctly from all sides

The use case thus requires the following modules to be developed:

• Point cloud (PC) generation module (which is dependent on the rendering engine)

• PC compression

• Data transfer of compressed PC data

• PC decompression

We underline that the R&D activity in CHARITY regards the aspects just mentioned, and no other
aspects involved in the fruition of the holographic content, such as the interaction modalities between
the user and the avatar or the design of the user interface.

5.5.2 First point cloud encoder/decoder (PC E/D) design considerations

The overall process that we have to take into account for the development of the PC E/D is the
following:

Step 1: We need to generate a point cloud from a generic 3D scene created with a game engine
like Unity 3D. This point cloud contains all the 3D scene points to be seen from different views
- at least two for the two eyes of the observer looking at the holographic 3D display. The
generation could be based for instance on rendering multiple views of the Unity 3D scene, but
the point cloud can be generated also in other ways. An advantage of this method is that it
relies on a very generic approach, easy to be applied to any 3D content and any 3D engine.

Step 2: the 3D point cloud needs to be compressed. As stated in the previous section,
additional algorithms and heuristics like detecting changes from frame to frame can be applied
in order to reduce the amount of data to transfer. Network quality adaption is also done here,
reacting to indicators and control mechanisms from the CHARITY Cloud. For example, the
resolution of the 3D point cloud could be adapted dynamically and/or the number of encoded
views could be reduced.

Step 3: the data is transferred over the network. Some feedback about network quality is
provided by the receiving client to the CHARITY cloud. The receiving client decompresses the
received point cloud data and applies it to the existing data model - i.e. applies scene point
changes for the case that only changes in the 3D point cloud have been transmitted. In the last
step, depending from the actual observer’s eye location at the holographic 3D display, the
views needed to generate the hologram are extracted from the local 3D point cloud and the
hologram is computed and presented to the observer.

To start, we need to define a data format suitable for data compression / decompression algorithm.
The idea is to use a volumetric format, i.e. a voxel, and store in each cell of the voxel a 3D points plus
additional information such as:

• Location in space → defined by position in the grid

• Color + optional alpha + material tag to define transparency behaviour

• material tag could be something like: fog/smoke, clear glass, distorting glass, coloured glass

• Viewability - definition from where the point or a certain list of points can be seen → certain
eye boxes in space are needed to be defined

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 76 of 91

• If no eye boxes are defined, we assume this is not a reduced PC and could not be seen from all
sides, in this case no viewability attributes are provided.

For the overall PC we need:

• Eye boxes / ranges for which this PC is valid → in 3D space we define the PC cuboid's location
and size + multiple eye boxes

• Resolution in X/Y/Z → number of voxels / definition of the 3D grid

• Information about globally contained attributes → alpha and / or material tags, viewability
information.

Figure 48 explains what is meant with eye boxes and 3D point viewability. Certain 3D points would be
seen only from certain eye boxes while most points are visible from all eye boxes.

Figure 48: Relationship between the eye boxes and visibility of the 3D points

Regarding the existing standards for point clouds, we analysed the recently published MPEG Point
Cloud Compression (MPEG PCC) standard [21].

From the viewpoint of official standardization, good progress was made by the MPEG Point Cloud
Compression project (MPEG PCC). It was initiated in about 2014. A call for proposals in 2017 resulted
in a first draft of the standard at the end of 2018. Until today the standard is under development and
there is an actively maintained reference implementation. Basically, the standard proposes two types
of 3D point cloud compression - video based (V-PCC ISO/IEC 23090-5) and geometry based (G-PCC
ISO/IEC 23090-9).

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 77 of 91

Figure 49: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1).

The V-PCC variant uses classic image-based processing (color + depth + occupancy maps). By applying
common image-based compression methods (HEVC in the reference implementation), quite good
compression rates can be achieved. The method is based on projection of the 3D source scene or point
cloud on multiple 2D maps from different perspectives. These projections or patches are then mapped
into the frame - the "atlas" - to be encoded / decoded by means of video compression. Here multiple
maps are generated, attribute maps (can be RGB color but also something else), depth maps
(representing the distance from the according perspective) and an occupancy map (representing valid
pixels). Within a (lossless encoded) meta data channel, information about how to reconstruct these
patches back into the 3D point cloud are provided within the multiplexed data stream. Within the
process of generating the patches and atlas, some improvements on the data are done, i.e. detection
and removal of duplicate 3D points or improvement of quality esp. on the regions between patches
(seams). As a result, very good compression rates are achieved. The MPEG PCC research group defined
some reference data sets (see Figure 49), where the rates and quality of different algorithm versions
and parameter variants could be measured and compared. For example, a scene with 100k
points @30fps corresponds to 360Mbit/s uncompressed data rate. With V-PCC a compression to about
1 MBit/s can be achieved using version TMC2v8.0 while achieving good quality.

The G-PCC variant is based on compressing the 3D points directly one by one. Here the 3D points
structure (point locations) is encoded lossless by using an octree approach (divide a cube into 8 cubes
iteratively until we are at point level – noting down if there is something inside the cube or not –
represented with 8 bit per cube). For encoding point attributes (i.e. RGB color), three compression
methods have been developed. These methods basically make use of similarity / redundancy between
colors down the octree graph. The algorithm also allows for different level of details - usable e.g. to
adapt for variations in available data rate or to adapt for current detail requirement in rendering
process. Currently the algorithm does not use temporal compression approaches, that would enable
lower data rates in situations where the 3D scene does not change much from frame to frame – as
compared to MPEG video compression where this approach is employed and is extremely effective.
However, some work in this direction may be done for the next version of the standard.

 Preliminary analysis

For G-PCC some of the above data sets have been compared. For example, in a scene with 100k points
at 10 fps, corresponding to 110 MBit/s uncompressed data rate, a compressed rate down to about 24
MBit/s could be achieved with good quality.

Further tests are required, but from this preliminary analysis, we can conclude that the V-PCC encoding
time is too much high for our target requirements, while G-PCC approach would be a better starting
point. Anyway, G-PCC has no support for taking into account visibility of the 3D points. Hence, the key
steps of the development are:

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 78 of 91

• to exploit the visibility information to reduce the amount of data required by the edge device
the viewpoint information can be used also to make the generation of views more efficient

• to do more accurate tests about the performance of the G-PCC, since many parameters can be
tuned

• to evaluate if the compression scheme investigated in section 5.5.3 (the ones considered
promising) are a valid alternative to the MPEG standards due to their light computational
complexity

5.5.3 PC generation module and first prototype of the algorithm

Before a point cloud can be compressed, it needs to be generated. Typically, one creates a point cloud
from a static 3D scene/3D model, which then can be watched from different angles at different level
of details. In this case the point cloud is often directly generated from triangles or 3D-mesh.

In the context of the UC1-3 Holo Assistant a different approach was chosen. The main goal is to convert
the visual output of any 3D-application with any content including animations, complex materials and
lighting into a video based, streamable 3D point cloud. The advantage is that such a point cloud enables
to generate the required views from certain directions locally at the end user device, while the actual
3D-content is managed and rendered somewhere else, e.g. in the cloud. This has following advantages:
first the certain views required by the output device, e.g. a holographic 3D display, are generated with
very low delay independent from actual network performance. Secondly, the end user device could be
something like a thin client, thus it needs only to output the required views and does not need to
render high fidelity 3D-content. This is comparable to actual 2D based game streaming services
commercially available. These approaches cannot be used for XR or holographic devices where the
observer needs different views dependent from his own (head-) location (cf. VR/AR headsets or
holographic 3D devices with head- or eye-tracking).

Thus, in this case, the point cloud is generated from GPU renderings of the 3D scene in Unity 3D from
different viewpoints (one RGB and depth image per view, see Figure 50) and then merged into a single
or multiple point clouds. Compared to typical point cloud data sets where the data provides
information from all watching directions, full details are in this case visible only from certain angular
ranges. These limited valid viewing ranges or zones are generated from the different provided views
mentioned above. This concept has the advantage to dramatically reducing overall amount of required
3D points in the point cloud to enable more efficient compression and frame by frame-based transfer
of point cloud-based video. Frame by frame-based point cloud data will also enable the opportunity to
make use of differences between point cloud frames, so for quite static 3D scenes with limited changes
from frame to frame, a lower number of changing 3D points is to be expected so this can be used for
efficient compression and transfer of video-based point cloud data.

Figure 50: Example of three slightly different views (depth + RGB data). These views can be merged together to
form the point cloud

Nevertheless, this step is costly simply due to the large number of views and 3D points to be processed.
One approach is to use an octree technique to reduce the number of 3D points by applying hierarchical
3D rasterization however octree implementation suffers for the number of lookups and poor memory

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 79 of 91

coherence.
The point cloud resulting from merging depth maps from slightly different views, can be more
efficiently represented as a 2D depth map with colour information and additional points whenever a
jump in depth occurs: (see Figure 51).

Figure 51: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views

For these reasons, a more suitable data structure is a 2D grid where each element is the start of a
linked list (usually containing zero or one element). A similar structure is a hash map with linked lists
to resolve conflicts, but in our case an ‘identity’ hash already guarantees very few collisions, optimal
memory coherence and O(1) access time.

To extract this merged mesh from the several depth maps+RGB generated from different viewpoints,
we can start from one of the views (V0) depth map, then for each pixel of the following views (V1) we
un-project in world space and re-project in V0 space, compare the depth to determine if the point is
already present and if not add it to the merged point cloud (see Figure 52).

Figure 52: Depth map can be used to find the hidden points using projection between different views. In green
and red the points revealed by this operation.

We can process each depth map line by line and exploit the extreme memory coherence.

We can move the bulk of these computations in GPU: Instead of saving depth map and RGB, we project
each point in a common final voxel space saving x y and z as additional attributes. While data size
increases, we save matrix multiplication per pixel in CPU.

We tested this strategy and we can process 25 views 800x600 in CPU in 30ms, including rendering and
transfer of the views depth maps from GPU to CPU for a simple dataset.

An additional optimization is to use the first depth-map as a texture and the following renderings can
directly compare each pixel with the corresponding (projected and in the first view space) pixel in the
texture and write the ‘hidden’ pixels only if the depth does not match.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 80 of 91

Finally, the few ‘hidden’ pixels can be directly written to an array or compacted in a second pass, to
minimize the amount of data transferred back to the CPU.

The final data to be compressed consists of a depth+rgb map, where depth is quantized accordingly to
the precision needed by the hologram projector, and a small array of xyz+rgb points.

Figure 53 shows an example of the merged point cloud visualized from a different, invalid perspective,
so one can see the missing data. In addition, the result of rendering the point cloud from a valid angle
is shown.

Figure 53: (Left) Example of a 3D Point Cloud visualization; (Right) Rendered final result after reconstructing into
an image

5.5.4 Point cloud compression – first evaluations

Data compression trades CPU computation and latency for reduced network bandwidth usage: the
effectiveness of a compression algorithm depends both on compression ratio which determines the
bandwidth reduction and on compression and decompression speed. However, long computational
time might negate the bandwidth advantage.

Compression and decompression speed of an algorithm have always played a crucial role in
determining its success, where good compression performances are especially difficult to obtain.
Historically, in Computer Graphics, geometry compression algorithm competition has been focused
mainly if not almost exclusively on compression ratio, and consequently widely used compression
algorithm has become available only very recently when good performances combined with fast
decompression have become possible, (Draco [15], Corto [18], Potree [19]) especially on the Web
where the limited performance of JavaScript prevented a solution for a long time, while at the same
time, bandwidth limitations made the problem more pressing.

We performed an initial evaluation of the performances of the available open-source libraries on a
sample point cloud containing 20K points with colour information, weighting 570KB in raw binary
format. All tests were performed using the same attribute and position quantization and a single
thread processing. Results are reported in Table 24.

Table 24: Evaluation geometry compression algorithm

Algorithm Compression time in seconds Compressed size

Quantization < 0.001s 140KB

gzip -1 0.004s 100KB

gzip: -7 0.018s 90KB

Corto 0.005s 71KB

Dracol 0.030s 71KB (missing colours!)

Tmc13 0.138s 53K

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 81 of 91

All geometry compression algorithms perform some form of quantization on the vertex position and
attributes. Due to the limited size of the dataset, drastic quantization can be performed on the
positions (from 32 bits to 11 bits per coordinate) at a negligible cost in quality. Larger datasets can be
easily cut into blocks so the numbers from this experiment remain significant.

As a comparison we tested a zip library (actually zlib), a general-purpose compression algorithm. The
low compression ratio is mainly due to the fact that it cannot exploit the geometric coherence of the
point cloud. Due to the relatively low compression ratio, there is a small difference in compression
ratio when changing the dictionary length of the algorithm. On the other hand, large dictionaries
become a large penalty in decompression time (4 times here) mostly due to the fact that the dictionary
will not fit in the L2 cache generating many cache misses. Other entropy compression algorithms (LZ4
for example) have been tested, with much faster compression timings but worse compression ratio.

Corto [18] adopts a very simple Morton-code based geometry compression with a difference encoder
for the attributes (colours in this case).

Tunstall [20] (which is basically a reverse Huffman) is used as an entropy coder due to its extreme
speed in decompression while still being fast enough in compression and having compression ratio
similar to Huffman. Corto is able to encode five million vertices per second, while decoding at around
25M vertices per second. Adopting Huffman instead would probably reverse the speeds. Other entropy
coders could be used and offer different trade-off between speed and compression ratio.

Draco [15] adopts a similar approach based on differences combined with arithmetic entropy coding.
Surprisingly the compression ratio is worse while colour information has not been encoded (command
line software does not support it). Unsurprisingly, due to more sophisticate entropy coding, the
compression timing is 5 times worse. Draco offers much better trade-off for meshes.

Tmc13 [21] offers the best compression ratio (1:10), at the cost of a long processing time 0.14s, 142K
triangles per second. This software offers a very large set of parameters to be tuned, coupled with a
lack of a decent documentation or guidance. We tested a (very) large number of configurations with
mixed results. We are confident that marginally better results can be obtained, the picture is not going
to change substantially.

For each compression algorithm, speed and compression ratio defines a bandwidth above which it
makes no sense to compress as it would take more time to compress/decompress the data than to
send raw, quantized (11 per coordinate 8 per colour channel, for small datasets, in total 58 bits) data.

Tmc13 becomes useful when the network bandwidth is smaller than (58/8)*142K/s ~ 1MB/s, while
Corto keeps being competitive up to 58*5M/8 = 36M/s. For bandwidth lower than ~1.3MB/s higher
compression ratio of Tmc13 allows to better make use the limited bandwidth.

Since it is relatively easy to perform point data compression in parallel, adding computational power
allows Tmc13 to remain competitive with higher available bandwidth.

The compression algorithm could be very easily swapped for a different one at any time in the
streaming depending on bandwidth or CPU limitations, and the most promising algorithms to adopt
for geometric compression, according to these preliminary investigations are Corto, Tmc13, and also
the simple quantization is competitive.

In the case of limited bandwidth, a more aggressive compression strategy is used on video codecs
(h264 for example) where the depth+rgb maps can be treated as a video stream, and the array of
‘hidden’ points compressed as before. The main point is that this codec can take into account
differences between consecutive frames and drastically cut the bandwidth needed.

Preliminary tests on the backpack dataset shows 20ms are needed for the h264 compression strategy,
enough for 30fps, but the ability to only encode differences shows the savings in bandwidth are very
promising (10x on a few tests, but obviously depends on the dataset, camera movement, animations
etc.).
Tweaking the compression parameters allows also to control the trade-off between computational
cost and compression ratio.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 82 of 91

5.5.5 Conclusions

From the set of tests we concluded that the most promising approach is to use a 2D map + collision
data structure, process the different views directly in GPU and use H264 for the 2D map and the extra,
conflicting points encode the differences between successive points using a simple entropy coding
(being too sparse to really take advantage of octree based point cloud compression algorithms).

The implementation of the first prototype is ongoing. We expect to have the working version of the PC
E/D available for the end of January 2023.

5.6 Video streaming and platform development

Cyango Cloud Studio is the name of one of the software platforms related to the UC2-2 VR Tour Creator
Application in CHARITY. Cyango Cloud Studio allows any user to create virtual experiences that can be
used for all industry verticals, especially education and tourism. It is a web-based platform and the
main goal is to host the micro services inside CHARITY cloud to provide a better performance and
better user experience. There are many problems that CHARITY allows us to address, mainly related
to the livestreaming, and to the editing in real time of media content.

Cyango Cloud Studio development is progressing. We have been focusing in many features and making
sure the user interface and user experience are according to the feedback we gathered via meetings,
calls and demos at events showing our software.

One important progress was the migration of the 3D Web engine framework from Aframe21 to the
more modern and compatible framework with React.js, which is called React-Three-Fiber22. This
change of framework required an extensive code re-factoring, as its logic was different from Aframe.
Some months have been spent for the migration. This guarantee better for the scalability of the use
case. Basically, we built the already made features again like placing 360 videos on VR, interactive
hotspots and other UX features. Additionally, with this new framework we can now have a smooth
coding always inside React environment. We also re-designed the UI of the platform using Adobe XD,
and in the following months we will start implementing this new design.

Figure 54: New design of Cloud Studio (screenshot 1)

21 https://aframe.io

22 https://github.com/pmndrs/react-three-fiber

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 83 of 91

Figure 55: New design of Cloud Studio (screenshot 2)

The images above (Figure 54 and Figure 55) are some screens of the whole platform redesign. We also
made important research about how to achieve a important feature the users requested, which is the
online video editor, that allows the user to edit the video and audio. This video editor tool will be based
on the FFMPEG+WASM23, a pure web assembly port of FFMPEG, that allows to edit video, audio and
stream inside the browser. We also designed a screen of how this video editor tool would be like in
Cyango Cloud Studio, shown in Figure 56.

Figure 56: Video editor tool

23 https://github.com/ffmpegwasm/ffmpeg.wasm

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 84 of 91

DOTES implemented also the first livestreaming feature that is under optimization.

Regarding the performance, a series of livestreaming tests using a high quality 360 camera and a server
of the company has been conducted. These tests allow to understand what factors are preventing a
good user experience.

The setup used in such tests were: 360 camera streaming in Lisbon, Portugal and the consumer user
located in Évora, Portugal. The 360 camera was streaming to a service inside a docker container hosted
in our Synology NAS 918+24 . This container is built on:

• Nginx 1.17.5 (compiled from source)

• Nginx-rtmp-module 1.2.1 (compiled from source)

• FFmpeg 4.2.1 (compiled from source)

and allows to stream to a RTMP url using a server public IP address, and then the front-end app
consumes the url called https://live.cyango.com . This url points to the docker container in a server of
the DOTES. This docker container receives a video stream from the 360° camera via RTMP and then
uses ffmpeg to convert the video in real-time to the HLS format so we can consume it on the front-
end.

The network parameters of each endpoint are the following:

Figure 57: Camera end network settings

Figure 58: End user network settings

We did some tests with different parameters as detailed below. These tests were conducted to
understand the performance of the algorithm and protocols we are using in Cyango Cloud Studio.

24 https://www.storagereview.com/review/synology-diskstation-ds918-review

https://live.cyango.com/

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 85 of 91

Test 1

In the first test the camera was streaming video at 4k 3840x2160 with a bit rate of 10MB/s. In this first
test we experienced an high number of video stops during playing, approximately 10 times per 20
seconds of streaming. An accurate perceptual measure of this problem is under evaluation but the
streaming quality has shown to be clearly insufficient.

Figure 59: Screenshot of the livestream test

Test 2

In this test we lowered the camera settings to 1440P 2560x1440 with a bit rate of 10MB/s, and still
experienced video stops similar to test 1.

Test 3

We lowered the camera settings to 1080P 1920X1080 with a bit rate of 10MB/s, and still experiencing
the same as test 1 and test 2.

Test 4

In this test we used the camera settings as 960P 1920x960 with a bit rate of 5MB/s. And in this test the
video plays without stops, but we noticed about a 3 minutes delay. We could confirm this delay,
because we had a phone call between the two DOTES collaborators confirming the delay.

Test 5

In this test we lowered the camera settings to 720P 1440x720 and a bit rate of 5MB/s. In this case the
video plays without stops and with a delay of about 45 seconds, using the same process as test 4.

From these preliminary tests, we conclude that the server we used is the major factor of the delay,
because it does not have good hardware resources to quickly transcode the video coming from the
stream to HLS. In the next, we exploit resources made available by CHARITY partners to make
additional tests. Also, some tweaks could be done on the algorithm approach. In the next tests
iteration, we will research about Low latency HLS25 to assess the latency reduction using this protocol.

25 https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 86 of 91

5.7 Mesh Merger

Initially, UC3-1 Collaborative Gaming Application, required Mesh Collider service. This service is based
on the point cloud data gathered on the mobile devices through RGB cameras and it creates a set of
well-defined polygons to allow a clean and clear interaction with the environment. We found out, in
the course of the research, that in many cases, 3D points reconstructed through RGB cameras cannot
reach high quality to obtain such clean geometry in in many cases (as shown in Figure 60). Main issues
when scanning using this method are:

• Noise/phantom data: point generated in random locations not connected to the environment
features.

• No point generated at flat surfaces: flat surfaces was treated as empty space. This happens
also for other featureless surfaces.

• Low precision: sometime low precision of feature points localisation.

Figure 60: Environment scanning using RGB method on Android device

To overcome the aforementioned problems, and to take into account that future mobile devices will
be more and more equipped with 3D sensors, we will move on this type of smartphone. LiDAR is
nowadays available on selected Apple devices (iPhones and iPads Pro), for this reason it has been
decided to test it along with ARKit available for Apple devices. The benefit of using ARKit is that it offers
additional functionalities like Mesh Collider (see Figure 61). The results of some reconstruction tests
were very promising: the quality of scanned data is very high and mesh colliders generated
automatically by ARKit have good geometric properties: continuity (no gaps) and simplicity (low
number of triangles) (see Figure 61).

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 87 of 91

Figure 61: Environment scanning using LiDAR with instant mesh collider building

Since ARKit provides proper mesh collider generation functionality, it has been decided to switch the
focus on merging mesh colliders coming from different acquisition devices. The idea is to merge mesh
colliders that are scanned and built in the same game session (and physical location) by the gamers.
This functionality will significantly enrich the immersion of all participants of the game.

Each participant equipped with smartphone with LiDAR scans a fragment of the environment, ARKit
builds a mesh collider from the scanned data and all mesh colliders are sent to the Mesh Merger service
(see Figure 62) developed in the ambit of the Task 3.4. This service merges all mesh colliders into one
common mesh collider. The merged version of the collider is then sent back to all devices. This way all
participants will be able to interact with a continuously update version of the mixed environment. The
Mesh Merger is in its first stage of the development and, at the moment, we do not have preliminary
results to show.

Figure 62: Merging mesh colliders

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 88 of 91

6 Conclusions

The description of the research and development work conducted in the WP3 and the results reported
in this deliverable, demonstrate the big effort put in developing innovative solutions for XR
applications, both from a scientific and a technological point of view. In fact, we do not only propose
and design new technical solutions, but we also develop novel algorithms. Regarding the prototypes,
even if some implementation activities are experiencing some delays, in general the direction is well
established, and the prototypes of some components are not far to be achieved. The monitoring
framework and the Mesh Service for applications adaptation have been carefully designed, spending
a lot of work to fulfil the needs and the requirements of the CHARITY project, and it will be ready in a
short time (the monitoring framework, in particular). The CHES is going to be released as open-source
software soon. Some of the XR-enabling technologies that we are developing, like the adaptive
rendering solutions and the Mesh Merger are still in the first implementation stage but, reasonably,
the first prototypes will be available in about 3-4 months. The first working prototype of the Point
Cloud E/D is planned to be released before the end of January 2023.

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 89 of 91

References

[1] Baresi, Luciano, and Danilo Filgueira Mendonça. "Towards a serverless platform for edge
computing." 2019 IEEE International Conference on Fog Computing (ICFC). IEEE, 2019.

[2] Gkoufas, Yiannis, and David Yu Yuan. "Dataset Lifecycle Framework and its applications in
Bioinformatics." arXiv e-prints (2021): arXiv-2103.

[3] Koutsovasilis, Panos, et al. "A Holistic Approach to Data Access for Cloud-Native Analytics and
Machine Learning." 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). IEEE,
2021.

[4] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Kästner. 2020. Exploring
differences and commonalities between feature flags and configuration options. Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP '20). Association for Computing Machinery, New York, NY, USA, 233–242

[5] W. Li, Y. Lemieux, J. Gao, Z. Zhao and Y. Han, "Service Mesh: Challenges, State of the Art, and
Future Research Opportunities," 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), 2019, pp. 122-1225.

[6] Svahnberg, M., Gurp, J., Bosch, J. On the Notion of Variability in Software Product Lines. Blekinge
Institute of Technology Research Report No 02/01. (2001)

[7] Bashari, M., Bagheri, E., Weichang Du, W. Dynamic Software Product Line Engineering: A
Reference Framework. International Journal of Software Engineering and Knowledge
Engineering, Vol. 27, No. 2 (2017) 191–234

[8] Raatikainen, M., Tiihonen, J., Männistö, T. Software product lines and variability modeling: A
tertiary study,J Systems and Software, Volume 149, Pages 485-510 (2019)

[9] Berger, T., Steghöfer, JP., Ziadi, T. et al. The state of adoption and the challenges of systematic
variability management in industry. Empir Software Eng 25, 1755–1797 (2020).

[10] Reisner, E., Song, C., Ma, K., Foster, J., Porter, A. Using symbolic evaluation to understand
behavior in configurable software systems. Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (2010)

[11] Mendonca, N., Jamshidi, P., Garlan, D., Pahl, C., Developing Self-Adaptive Microservice Systems:
Challenges and Directions. IEEE Software, vol. 38, no. 02, pp. 70-79, 2021.

[12] J. O. Kephart and D. M. Chess, "The vision of autonomic computing. Computer, vol. 36, no. 1, pp.
41-50, Jan. 2003

[13] J. Floch1 et al. Playing MUSIC - Building context-aware and self-adaptive mobile applications.
Software: Practice and Experience. 43. 359-388. (2013)

[14] G. Alfrez, V. Pelechano, R. Mazo, C. Salinesi and D. Diaz, Dynamic adaptation of service
compositions with variability models, J. Syst. Softw. 91 (2014) 24–47.

[15] R. Andrade, M. Ribeiro, H. Rebêlo, P. Borba, V. Gasiunas and L. Satabin, Assessing idioms for a
flexible feature binding time, Comput. J. 59(1) (2015) 1–32.

[16] Google 2017. Draco: 3D data compression. https://google.github.io/draco/. Accessed: 2022-05-
11.

[17] Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André Stork.2013. Fast Delivery of
3D Web Content: A Case Study. In Proceedings of the 18th International Conference on 3D Web
Technology (San Sebastian, Spain) (Web3D ’13). Association for Computing Machinery, New York,
NY, USA, 11–17. https://doi.org/10.1145/2466533.2466536

[18] Federico Ponchio and Matteo Dellepiane. 2016. Multiresolution and fast decompression for
optimal web-based rendering. Graphical Models 88 (2016), 1 – 11.

https://google.github.io/draco/
https://doi.org/10.1145/2466533.2466536

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 90 of 91

https://doi.org/10.1016/j.gmod.2016.09.002

[19] Markus Schütz. 2016. Potree: Rendering Large Point Clouds in Web Browsers. Ph. D. Dissertation.

[20] Tunstall, Brian Parker (September 1967). Synthesis of noiseless compression codes. Georgia
Institute of Technology.

[21] H. Liu, H. Yuan, Q. Liu, J. Hou and J. Liu, "A Comprehensive Study and Comparison of Core
Technologies for MPEG 3-D Point Cloud Compression," in IEEE Transactions on Broadcasting, vol.
66, no. 3, pp. 701-717, Sept. 2020, doi: 10.1109/TBC.2019.2957652.

[22] https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar, accessed 20-06-2022.

[23] Jeanette Ling, Rockwell Collins. Understanding Cloud-Based Visual System Architectures.
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2018.

[24] Teemu Kämäräinen, Matti Siekkinen, Jukka Eerikäinen, and Antti Ylä-Jääski. CloudVR: Cloud
Accelerated Interactive Mobile Virtual Reality. Proceedings of the 26th ACM international
conference on Multimedia (MM '18). Association for Computing Machinery, New York, NY, USA,
1181–1189.

[25] Mark Claypool, Kajal Claypool. Latency and Player Actions in Online Games. Communications of
the ACM, November 2006, Vol. 49 No. 11, Pages 40-45

[26] Waveren, J., The Asynchronous Time Warp for Virtual Reality on Consumer Hardware, 22nd ACM
Conference on Virtual Reality Software and Technology, 2016

[27] Nicholson, N. “Exploring ‘Negative Latency’”, December 2019,
https://nolannicholson.com/2019/12/16/exploring-negative-latency.html

[28] Makris A, Kontopoulos I, Psomakelis E, Xyalis SN, Theodoropoulos T, Tserpes K. Performance
Analysis of Storage Systems in Edge Computing Infrastructures. Applied Sciences. 2022;
12(17):8923. https://doi.org/10.3390/app12178923

[29] Antonios Makris, Evangelos Psomakelis, Theodoros Theodoropoulos, and Konstantinos Tserpes.
2022. Towards a Distributed Storage Framework for Edge Computing Infrastructures. In
Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge
(FRAME '22). Association for Computing Machinery, New York, NY, USA, 9–14.
https://doi.org/10.1145/3526059.3533617

[30] X.Hou,Y.Lu,andS.Dey,“WirelessVR/ARwithedge/cloudcomputing,” in Proc. Int. Conf. Comput.
Commun. Netw., 2017, pp. 1–8.

[31] Sebastian Friston, Tobias Ritschel, and Anthony Steed. 2019. Perceptual rasterization for head-
mounted display image synthesis. ACM Trans. Graph. 38, 4, Article 97 (August 2019), 14 pages.
https://doi.org/10.1145/3306346.3323033

[32] L. Fink, N. Hensel, D. Markov-Vetter, C. Weber, O. Staadt and M. Stamminger, "Hybrid Mono-
Stereo Rendering in Virtual Reality," 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), 2019, pp. 88-96, doi: 10.1109/VR.2019.8798283.

[33] Jie Guo, Xihao Fu, Liqiang Lin, Hengjun Ma, Yanwen Guo, Shiqiu Liu, and Ling-Qi Yan. 2021.
ExtraNet: Real-time Extrapolated Rendering for Low-latency Temporal Super-sampling. ACM
Trans. Graph. 40, 6, Article 278 (December 2021), 16 pages.
https://doi.org/10.1145/3478513.3480531

[34] X. Hou and S. Dey, "Motion Prediction and Pre-Rendering at the Edge to Enable Ultra-Low Latency
Mobile 6DoF Experiences," in IEEE Open Journal of the Communications Society, vol. 1, pp. 1674-
1690, 2020, doi: 10.1109/OJCOMS.2020.3032608.

[35] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality on mobile devices via
rendering memoization,” in Proc. Int. Conf. Mobile Syst. Appl. Services, 2016, pp. 291–304.

[36] L. Liu et al., “Cutting the cord: Designing a high-quality untethered VR system with low latency

https://doi.org/10.1016/j.gmod.2016.09.002
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://nolannicholson.com/2019/12/16/exploring-negative-latency.html
https://doi.org/10.3390/app12178923
https://doi.org/10.1145/3526059.3533617
https://doi.org/10.1145/3478513.3480531

D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 91 of 91

remote rendering,” in Proc. Int. Conf. Mobile Syst. Appl. Services, 2018, pp. 68–80.

[37] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Human
trajectory prediction in crowded spaces,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2016, pp.
961–971.

[38] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially acceptable
trajectories with generative adversarial networks,” in Proc. Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 2255–2264.

[39] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction using recurrent neural
networks,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4674-4683.

[40] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom, “Deep representation learning for human
motion prediction and classification,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp.
1591–1599.

[end of document]

