
1

Deterministic Latency/Jitter-aware Service Function
Chaining over Beyond 5G Edge Fabric

Hao Yu, Tarik Taleb, Senior Member, IEEE, and Jiawei Zhang

Abstract—Deterministic Networking (DetNet) has recently at-
tracted much attention. It aims at studying the deterministic
bounded latency and low latency variation for time-sensitive
applications (e.g., industrial automation). To improve the quality
of service (QoS) guarantee and make the network management
efficient, it is desirable for Internet Service Provider (ISP)
to obtain an optimal service function chain (SFC) provision
strategy while providing deterministic service performance for
the time-sensitive applications. In this paper, we will study the
deterministic SFC lifetime management problem in beyond 5G
edge fabric with the objective of maximizing the overall profits
and ensuring the deterministic latency and jitter of SFC requests.
We first formulate this problem as a mathematical model with
the maximal profits for ISP. Then, the novel Deterministic
SFC Deployment algorithm (Det-SFCD) and SFC Adjustment
algorithm (Det-SFCA) due to traffic load variation are proposed
to efficiently solve the SFC lifetime management problem. Ex-
tensive simulation results show that our proposed algorithms can
achieve better performance in terms of SFC request acceptance
rates, overall profits and latency variation compared with the
benchmark algorithm.

Index Terms—Deterministic Networking (DetNet), Network
Function Virtualization (NFV), Service Function Chain (SFC),
and Beyond 5G Edge Fabric

I. INTRODUCTION

The emerging applications, e.g., video feeds from cameras
that are used to control robots in Industrial Internet of Things
(IIoT) environments [1] and autonomous automotive vehicles
[2], foster the development of 5G and beyond 5G. For these
applications, both high data rates and low communication
latency should be ensured by using a dedicated mechanism
in the 5G and beyond 5G network environments. Especially,
the real-time communication within few milliseconds, needed
by industrial applications [3], requires the networks to provide
deterministic end-to-end connectivity to users. To this end,
IETF Deterministic Networking (DetNet) Working Group [4]
[5] defines an architecture focusing on layer 3 routed segments
to provide a deterministic data path which aims at supporting
deterministic worst-case bounds on latency, packet delay vari-
ation (jitter), and extremely low/zero packet loss. In this paper,
we extend this concept into the field of softwarized network

Hao Yu is with the Center for Wireless Communications, Oulu University,
Oulu 90570, Finland. E-mail: hao.yu@oulu.fi. (Corresponding Author)

Tarik Taleb is with the Center for Wireless Communications, Oulu Uni-
versity, Oulu 90570, Finland, and also with the Department of Computer and
Information Security, Sejong University, Seoul 05006, South Korea. E-mail:
tarik.taleb@oulu.fi.

Jiawei Zhang is with the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of Posts and Telecommuni-
cations, 100876, China E-mail: zjw@bupt.edu.cn.

service management and that is to study the deterministic
network service provisioning mechanism.

With the advent of network function virtualization (NFV)
and software-defined networking (SDN) technologies, Internet
Service Providers (ISPs) can deploy their network services
flexibly and efficiently. Upon receiving user requests, ISPs
have to configure the required virtual network functions
(VNFs) into suitable physical servers and steer the traffic to
traverse the VNFs concatenated in a specified order to comply
with performance policy, which is defined as service function
chain (SFC) [6] [7]. Optimal SFC embedding onto physical
networks has drawn much attention in the recent literature.
However, most of the existing work in the literature focused on
maximizing network throughput/resource efficiency, regardless
latency requirements; whereas maximizing network resource
efficiency while keeping the service latency and latency vari-
ation (jitter) within a deterministic bound has received less
attention. As shown in Fig. 1, in traditional networks, the end-
to-end latency/jitter curves have a wide probability distribution
with a long tail. The main objective of this research is to
realize bounded end-to-end latency and delay variation with
no long tails in an end-to-end converged network; ultimately
supporting deterministic services. Another goal is to increase
the profits of ISPs by optimizing the resource allocation
and placement of VNF instances while ensuring deterministic
latency performance. Moreover, due to the highly dynamic
nature of network traffic load, it is a challenge to embed SFC
requests with deterministic latency bounds and lower jitter
during the SFC lifetime.

As shown in Fig.2, edge nodes {V1, V2, ..., V7} are equipped
with a certain amount of processing resources and switch-
ing ability. At cell sites (CSs) side, user devices generate
SFC requests over time. And the SFC requests are featured
with latency requirements, which are comprised of commu-
nication latency and VNF processing latency. Once a new
SFC request arrives, optimal path selection and processing
resource allocation should be performed in order to meet its
latency requirement. For example, SFC 2 is newly arrived
in the networks and its end-to-end latency requirement is
LE2E 6 15 ms. After considering the network load status
and distance between source and destination nodes, Path 2 is
selected with communication latency Lc = 2 ms. Then the
VNF processing budget is 13 ms and we need to determine
how to allocate appropriate processing resources to the VNF
instances of this SFC and to make sure that the processing
latency L1

p + L2
p + L3

p + L4
p ≤ 13 ms and the total cost for

VNF processing is minimized.
In this paper, given the SFC requests and finite physical

2

P
ro

b
a

b
il

it
y

End-to-End Latency

P
ro

b
a

b
il

it
y

Delay variation
La

te
n

cy

re
q

u
ir

em
en

t

Average
P

ro
b

a
b

il
it

y

End-to-End Latency

P
ro

b
a

b
il

it
y

Delay variation

Average

Traditional networks

Deterministic networks

La
te

n
cy

re

q
u

ir
em

en
t

Fig. 1: Comparison of latency performance between traditional
networks and deterministic networks.

resources in 5G edge environments, we try to address the de-
terministic SFC lifetime management (Det-SFCLM) problem.
It is easy to keep the QoS of single SFC to be deterministic.
However, it is challenging to ensure most SFCs deployed in
the network to be deterministic under the restricted resource
capacity during their lifetime. Thus, we try to solve this
problem from two aspects: (i) how to optimize the resource
allocation and path selection for SFC deployment; (ii) how
to adjust resource allocation to ensure the bounded service la-
tency and jitter under the traffic variation, which can ultimately
maximize the overall incomes for ISP. These two aspects form
the whole procedure of lifetime management for SFCs. For
the first sub-problem, we try to solve it in two directions: (i)
improve the service acceptance ratio (i.e., increase the revenue
derived from providing services to users); (ii) reduce the
resource consumption by optimizing the resource allocation to
VNF instances (i.e., reduce the network cost for ISPs). Given
that the propagation, transmission latency are deterministic, we
need to bound the non-deterministic VNF processing latency
in order to achieve an overall deterministic end-to-end latency
and jitter for time-sensitive services. For the second sub-
problem, we will investigate the optimal VNF scaling up/down
scheme in response to the traffic variation to keep the bounded
latency by considering the historical network load, which will
help avoid resource bottleneck and reduce network congestion.

We apply the Det-SFCLM problem to the 5G edge en-
vironments where an open and smart radio access network
(RAN) architecture, as specified by the O-RAN alliance [8],
is assumed to be part of the environments. The main idea
of O-RAN concept includes RAN function disaggregation via
open interfaces and open-source platforms, which facilitates an
open and virtualized 5G edge networking ecosystem. By em-
ploying NFV concepts in O-RAN architecture, the baseband
processing units in the new architecture can be implemented
as RAN VNFs instantiated at the edge servers.

We extend our previous work in [9] to further address the

problem of provisioning SFC requests with deterministic la-
tency and jitter. First, we formulate it as a mathematical model
and the objective is to maximize the overall profits for ISP
over a time period. Then, we propose two novel algorithms,
named Deterministic SFC Deployment (Det-SFCD) algorithm
and Deterministic SFC Adjustment (Det-SFCA) algorithm.
Det-SFCD obtains the optimal placement and processing re-
source allocation for VNF instances by considering defined
deployment cost based on an extended shortest path algorithm.
Det-SFCA optimizes the processing resource adjustment to
make the latency, caused by the traffic variation, stable by
considering historical network load. The contributions are
listed as follows:
• We study the QoS-based (i.e., deterministic latency and

jitter) end-to-end SFC management in 5G edge environ-
ments including radio access and core networks. We then
formulate the SFC lifetime management problem by a
mathematical model with the objective of optimizing the
resource allocation and VNF instance placement.

• We propose efficient composition algorithms for the auto-
mated deployment of SFCs, which consists of Det-SFCD
algorithm which is designed for optimal path selection
and resource allocation for VNF instances, and Det-SFCA
algorithm which tries to adjust resource allocation of
VNF instances on the basis of the traffic variation in order
to ensure deterministic latency.

The remainder of this paper is organized as follows. Sec-
tion II introduces some related work. Section III presents
the system model. Section IV formulates the deterministic
SFC provisioning problem and our proposed algorithms are
presented in Section V. The performance evaluation results
are discussed in Section VI. Section VII concludes this paper.

II. RELATED WORK

The SFC problem has been widely studied and many solu-
tions have been proposed. From the perspectives of network
optimization objectives, some works studied how to maximize
the QoS of SFCs under the network resource restriction,
e.g., minimizing the total service latencies. The authors in
[10] introduced “COLAP”, a predictive framework to place
the participating VNFs of a SFC in a cloud environment
while optimizing the service latency. In summary, this work
has considered the service latency as the main metric while
overlooking the VNF instances’ dependencies and availability
metrics. Gouareb et al. [11] studied the problem of VNF
placement and routing across the physical hosts to minimize
overall latency defined as the queuing delay within the edge
clouds and in network links. Jinke et al. [12] formulated
a joint communication and computation resource allocation
problem with the objective of minimizing the weighted-sum
latency of all mobile services. Then, a closed-form optimal
task splitting strategy is derived as a function of the normalized
backhaul communication capacity and the normalized cloud
computation capacity. Qu et al. [13] formulated a Mixed
Linear Programming Model (MILP) and a heuristic approach
to minimize the SFC end-to-end delays while overcoming
the scalability of an optimization model. The authors have

3

𝑓ଵ 𝑓ଶ 𝑓ଷ

𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ

𝑉ଵ

𝑉ଶ

𝑉ଷ

𝑉ସ

𝑉ହ

𝑉

𝑉

𝐿ாଶா ൌ 𝐿𝐶 𝐿𝑃 10 𝑚𝑠

𝐿ாଶா ൌ 𝐿𝐶 𝐿𝑃 15 𝑚𝑠

SFC 1

UEs
Newly arrived VNF1

Newly arrived VNF2

Newly arrived VNF3

SFC 2
UEs

CS 1

CS 2

Newly arrived VNF4

Path 2: LC=2 ms

LP_1=4 ms

LP_2=2 ms

LP_3=3 ms

LP_4=3 ms

Path 1

Fig. 2: Embedding SFC requests in 5G edge networks.

proposed an algorithm that selects a subset of VNFs that are
needed to generate a SFC and its redundant.

On the other hand, some works considered the network
utilization, e.g., computational resources, as the main metric
to achieve better resource utilization. The authors in [14]
formulated the VNF placement problem as bin-packing and
open Jackson network problems to maximize the compute
resource utilization. Benkacem et al. [15] formulated the VNF
placement problem as two Linear Integer problem models,
aiming at minimizing the cost and maximizing the quality
of experience (QoE) of the virtual streaming service. They
then ensured an optimal tradeoff solution between the cost
efficiency and QoE by applying the bargaining game theory.
Bari et al. [16] solved the VNF placement problem with
a simplified set of constraints, which only considers the
deployment cost, the resource requirement, and the processing
delay, and discards the placement constraints, such as the VNF
chaining, reliability, and delay tolerance constraints. Taleb et
al. [17] proposed a VNF placement algorithm to minimize the
cost in terms of the total number of instantiated VNFs in a
cloud environment. The authors in [18] and [19] solved the
VNF placement and routing optimization problem by using
mixed integer linear programming (ILP) models. Nevertheless,
the ILP and MILP algorithms can only be solved offline.
Due to the high complexity, it is usually applied in small-
scale network. Otherwise, many works have solved the service
function chaining problem by proposing efficient heuristics
which can be used to configure and manage SFCs online with
higher scalability. Basically, the SFC placement problem can
be partitioned into two sub-problems: i) a VNF placement
problem and ii) a routing problem. A fast heuristic framework,
called Holu, that can efficiently solve the power-aware and
delay constrained joint VNF placement and routing (PD-

VPR) problem is proposed in [20]. It addresses these two
sub-problems sequentially, which improves the system perfor-
mance in terms of total power consumption and acceptance
rate.

In terms of the SFC lifetime management, the SFC op-
erations can be also partitioned into two parts: embedding
phase and adjusting phase. The authors in [21] studied the
SFC problem in geo-distributed cloud system by proposing
SFC eMbedding APproach (SFC-MAP) and VNF Dynamic
Release Algorithm (VNF-DRA) to efficiently embed SFC
requests and optimize the number of placed VNF instances.
Junjie et al. [22] jointly optimized the deployment of SFCs
and the readjustment of in-service SFCs while considering
the trade-off between resource consumption and operational
overhead. They designed a column generation (CG) model for
solving the optimization problem. Xincai et al. [23] derived
the requested instances with adaptive processing capacities
and called two other algorithms for new instance assignment
and service chain rerouting, respectively, while achieving
good competitive ratios. The problem of dynamic placement
reconfiguration of 5G User Plane Functions (UPFs) in a MEC
ecosystem was studied in [24], a scheduling technique based
on Optimal Stopping Theory (OST) was proposed to adapt
to changes in user locations while ensuring QoS and network
operator expenditures reduction. The authors in [25] studied
the joint SFC deployment and resource management problem
(JSDRM) in heterogeneous edge environments to minimize the
total system latency and proposed a scheme based on a game
model to jointly deploy SFCs and manage resources.

Researchers have been addressing various aspects of SFC.
For instance, they propose different optimization models and
heuristic solutions for the SFC placement problem and SFC
lifecycle management problem. Despite all the significant

4

literature studies on SFC, SFC deployment and adjustment
still need to be further investigated and exploited to satisfy
the deterministic latency requirements as shown in Fig. (1).
Minimizing network latency or maximizing network utiliza-
tion, traditionally from a single side or both sides, cannot
meet the new requirements exposed by 5G and beyond 5G
networks. Deterministic latency performance, rather than la-
tency minimization, for SFCs can fit the network perfor-
mance requirements of time-critical services and should be the
new direction of network resource optimization. Deterministic
latency provides a more stable latency distribution which
can benefit the time-sensitive tasks from the upper layer. In
addition, the work in [26] is the first to use stochastic network
calculus (SNC) to study the end-to-end delay bound with given
traffic demand and resources. It proposes a solution to find the
amount of resources that should be allocated with given traffic
distribution and end-to-end delay bound, which is beneficial
for the network service provisioning under deterministic end-
to-end delay requirements.

Different from the above-mentioned literature, this paper
focuses on the optimal SFC lifetime management, i.e., SFC
deployment and SFC adjustment, under the deterministic end-
to-end latency and jitter requirements in 5G edge environ-
ments. Latency minimization is not the objective of this paper.
The proposed algorithms try to keep the end-to-end latency
experienced by SFCs within a bounded time interval below
the latency requirements.

III. SYSTEM MODEL

A. Network model

We start with a system description that identifies the scope
of our study. In the paper, we consider a 5G edge network com-
prised of edge nodes and cell sites (CSs) forming a multi-cell
coverage area for mobile users. Each edge node is equipped
with limited computational capacity utilized for running 5G
RAN and core network VNFs, where RAN VNFs perform the
RAN protocol stack (e.g., baseband processing function). We
denote by G = (N , E) the physical networks consisting of N
physical edge nodes, N = {1, 2, ..., N} and E physical links
connecting edge nodes in N , i.e., E = {1, 2, ..., E}. We use
n,m ∈ N to indicate nodes and (n,m) ∈ E to represent the
link connecting node n and m. The edge nodes are equipped
with different amounts of CPUs, RAM, etc. The node capacity
of each edge node in terms of processing and memory is given
as Ccpu

n and Cmem
n . For each direct link (n,m) ∈ E , the

bandwidth of (n,m) is expressed as B(n,m).

B. SFC model

A total number of K SFC requests arrive during T =
{1, 2, ..., T}. We use Ĝk = (Vk,Lk), k ∈ K to denote the
service function graph of SFC request k. Each SFC Ĝk is
defined as a vector {sk, dk, ak, qk, λk,t, Lk} to dictate the
property of this SFC. sk and dk correspond to the source and
destination nodes of SFC k. ak and qk represent the arrival
time and departure time. Tk = {t : ak ≤ t ≤ qk} denotes
the duration time that SFC k is running in the networks.
Since each SFC k ∈ K consists of a given number of

TABLE I: Notation and variables

Notation Description

Topology
G Substrate networks
N Set of nodes in substrate networks
E Set of links in substrate networks
n,m physical nodes in the network G
(n,m) physical links in the network G
Ccpu

n ,Cmem
n CPU/memory capacity of node n

B(n,m) Bandwidth resource capacity of link (n,m)

Service requests
T Set of time slots in the system
K Set of SFC requests
Ĝk Graph of SFC request k
Vk Set of VNFs in SFC k
Lk Set of virtual links in SFC k
Tk The time duration of SFC k
sk Source node of SFC k
dk Destination node of SFC k
ak Arrival time of SFC k
qk Departure time of SFC k
λk,t Data rate of SFC k at time t
Lk E2E latency requirement of SFC k
vk,n̂, vk,m̂ VNFs of SFC k
lk,(n̂,m̂) Virtual link between VNFs of SFC k
mk,n̂ Memory requirement of SFC k
ρk,n̂ The number of CPU cycles for processing one

information bit by VNF vk,n̂
Decision Variables

xn̂k,n Whether VNF vk,n̂ of SFC k is placed in edge
node n

πn̂
k,t The amount of allocated processing resources

for VNF vk,n̂ of SFC k at time t
π̂n̂
k The amount of allocated memory resources for

VNF vk,n̂ of SFC k

y
(n̂,m̂)
k,(n,m)

Whether virtual link lk,(n̂,m̂) of SFC k tra-
verses physical link (n,m)

y
(n̂,m̂)
k,n Whether virtual link lk,(n̂,m̂) of SFC k tra-

verses physical node n
η
(n̂,m̂)
l,t The allocated bandwidth for virtual link

lk,(n̂,m̂) of SFC k at time t
τpk,n̂,t Processing latency of VNF vk,n̂ of SFC k at

t
lpk,t Processing latency of SFC k at t
dprop
k,(n̂,m̂),t

Propagation latency of virtual link lk,(n̂,m̂) of
SFC k at time t

dtrans
k,(n̂,m̂),t

Transmission latency of virtual link lk,(n̂,m̂)
of SFC k at time t

τc
k,(n̂,m̂),t

Communication latency of ith virtual link of
SFC k

lck,t Communication latency of SFC k at t
lk,t Experienced E2E latency by SFC k at time t

System Parameters
ε Coefficient of latency variation bound of SFC
α1, α2 Coefficient of CPU/memory resource cost
β Coefficient of bandwidth cost
δ Coefficient of revenue from data rate
ω Coefficient of revenue from latency require-

ment
Nk The number of aggregated radio resource

blocks (RBs) allocated to the users in SFC k
aj RAN Layer 1 computational resource model-

specific constant
iMCS,k Indices of the MCSs of SFC k
θ1 Scaling factors of the Layer 1
θ2 Scaling factors of the high-layer VNFs

5

ordered VNFs except source and destination nodes, we use
Vk to denote the set of VNFs in SFC k where vk,n̂, vk,m̂
is the nth and mth VNFs in SFC k. We assume that the
processing latency of a VNF instance is only related to the
processing resource allocated to it. The amount of resources
allocated to a certain VNF can be arbitrary provided that the
overall processing latency of this SFC can satisfy the latency
requirement. We assume the memory resources requested by a
VNF is constant, we use a vector {mk,1,mk,2, ...,mk,n̂, ...} to
denote the memory requirement of SFC k. In addition, there
is a set of virtual links connecting the source node sk, ordered
VNFs and the destination node dk, we denote the link between
the nth VNF and the mth VNF in SFC k as lk,(n̂,m̂) ∈ Lk.
Each SFC supports one service associated with a data rate
λk,t at time t which is an aggregated bit rate of multiple users
belonging to this SFC.

Note that the processing resources (e.g., CPU cores) are sta-
tistically multiplexed if multiple VNF instances are deployed
on the same CPU core. The sharing of processing resources is
not considered since it cannot ensure deterministic processing
latency. As shown in [27], as more VNFs share the same CPU,
the CPU access latency experienced by each VNF increases
substantially. The processing latency of VNFs that are already
mapped will be degraded by the newly instantiated VNF in
the same CPU core, which leads to the latency uncertainty of
existing SFCs. Thus, in this paper, we assume that different
SFCs can not share the same types of VNF instances, even
if the VNF instances with the same types exist in an edge
node. Each VNF instance occupies the exclusive processing
resources and can only belong to a certain SFC.

IV. DETERMINISTIC SFC PROVISIONING PROBLEM

A. Problem Description

In a NFV-enabled edge system, an ISP should make optimal
planning for SFC request deployment to maximize its profit
while ensuring the deterministic requirements of SFC requests.
The problem can be described as: Given: a physical network
topology G = (N , E) and a set of SFC requests K. For each
SFC request, determine: 1) how to select path between source
and destination nodes and place VNF instances along the path,
2) how to allocate processing and bandwidth resources for
corresponding VNFs and traffic, 3) how to adjust resource
allocation when traffic load varies, to 4) maximize: the overall
profits of ISP from running SFC requests, meanwhile, 5)
ensure: deterministic latency performance. The traffic of SFC
request will traverse a series of ordered VNF instances and the
path selected on which the ordered VNF instances are mapped
will influence the resource consumption on edge nodes and
physical links. How to select suitable path and allocate re-
sources for SFC requests remain a challenge for deterministic
latency performance and maximum resource efficiency.

B. Problem Formulation

The SFC deployment basically consists of path selection and
resource allocation. These two parts are actually interactive to
each other and should be coordinated to achieve the objective
mentioned above.

VNF instance deployment: We denote by binary variable
xn̂k,n the placement of VNF vk,n ∈ V , xn̂k,n = 1 iff VNF vk,n̂
is placed in edge node n ∈ N , otherwise, xn̂k,n = 0. Based
on the observation that one edge node can host multiple VNF
instances and one VNF instance can only run on top of one
edge node, the placement constraint of VNF instance vk,n̂ can
be given as follows∑

n∈N
xn̂k,n = 1,∀k ∈ K,∀vk,n̂ ∈ Vk, k ∈ K (1)

Since the computing capability of edge node is shared by
all VNF instances that are placed on it, the total CPU and
memory capability allocated to VNF instances can not exceed
the total capability of the edge node. We then have∑

k∈K,n̂∈Vk

xn̂k,n · π̄n̂
k ≤ Cmem

n ,∀n ∈ N , (2)

∑
k∈K,n̂∈Vk

xn̂k,n · πn̂
k,t ≤ Ccpu

n ,∀n ∈ N , t ∈ Tk (3)

where we define πn̂
k,t, π̄

n̂
k to indicate the amount of processing

and memory resources allocated to VNF vk,n̂ of SFC k at time
t. The unit of processing resource is set as the CPU cycles
times by the number of CPU cores and the unit of memory
resource is GB in the paper, and π̂n̂

k = {0,mk,n̂}. Ccpu
n , Cmem

n

represent the resource capability of CPU and memory in edge
node n.

Traffic routing: For SFC k, we define the binary variable
y
(n̂,m̂)
k,(n,m) and y

(n̂,m̂)
k,n to denote whether the lk,(n̂,m̂) ∈ Lk

traverses link (n,m) ∈ E and the node n ∈ N , respectively. If
(n,m) ∈ E is traversed by lk,(n̂,m̂) ∈ Lk, n,m ∈ N must be
traversed as well. Then the following routing constraint must
be ensured as

y
(n̂,m̂)
k,n y

(n̂,m̂)
k,m = 1 if y

(n̂,m̂)
k,(n,m) = 1 (4)

∑
lk,(n̂,m̂)∈Lk

∑
m∈N

(
y
(n̂,m̂)
k,(n,m) − y

(n̂,m̂)
k,(m,n)

)

=

 1, n = sk
−1, n = dk
0, otherwise

, k ∈ K
(5)

Constraint (4) ensures the physical nodes and the virtual link
that connects them are consistent. Constraint (5) guarantees
that the links on the path to embed SFC k are connected head-
to-tail. If node n ∈ N is selected to serve the VNF n̂ ∈ V of
SFC k, this node must be traversed as follows

xn̂k,n ≤ y
(n̂,m̂)
k,n ,∀n ∈ N ,∀vk,n̂ ∈ Vk, lk,(n̂,m̂) ∈ Lk, k ∈ K

(6)

Also, since the bandwidth resource of physical link (n,m)
are shared by the virtual links that are mapped on it, the total
bandwidth consumed by these virtual links can not exceed the
total bandwidth resource of physical link (n,m). Firstly, we
define the following real variable: η(n̂,m̂)

k,t to denote the amount
of bandwidth allocated to the virtual link between nth and

6

mth VNF of SFC k. Then, we add the following constraints.
Constraints (7) ensures that the sum of bandwidths allocated
to virtual links can not exceed the total bandwidth of physical
link (n,m) at time t.

∑
k∈K,lk,(n̂,m̂)∈Vk

y
(n̂,m̂)
k,(n,m) × η

(n̂,m̂)
k,t ≤ B(n,m),

∀(n,m) ∈ E , t ∈ Tk
(7)

Deterministic Latency
For a SFC, latency will be incurred by data processing

in edge nodes and data transmission in physical links ac-
cordingly, i.e., processing latency and communication latency.
The service latency of a SFC is determined by both resource
requirement of SFC and the amount of resources allocated to
it.

(1) Processing Latency of VNFs: The SFC we consider in
the 5G edge fabric contains different types of VNFs, e.g., RAN
and core network functions, etc. Different kinds of network
functions work in a different way and the processing resource
requirements depend on different factors.
• RAN VNF modelling
For RAN functions, the RAN VNF performs layers of RAN

protocol stack (e.g., baseband processing). The computational
complexity of the specific RAN VNF depends on the user’s
traffic load (e.g., RAN Layer 3 and Layer 2), while Layer 1
processing is performed per assigned Resource Block (RBs)
and is mainly dependent on channel condition. The condition
in the channel dictates the appropriate coding rate and modula-
tion for the data to be transmitted successfully which leads to
different computational demand on Layer 1. Thus, the compu-
tational complexity of Layer 1 functions depend on the amount
of RBs assigned and Modulation and Coding Scheme (MCS).
The higher layer RAN VNFs (Layer 3 and Layer 2) and other
common VNFs (e.g., core network functions) processing are
user load dependent and the processing requirements depend
on the aggregated users’ data rates.

A VNF is usually instantiated by associating with a certain
combination of resources (e.g., CPU, RAM and etc.) and
the RAN VNF processing latency can be calculated as the
function of CPU frequency allocated if the number of RBs
and MCS indices are known. Therefore, given the amount of
CPU frequency πn̂

k,t allocated to Layer 1 RAN VNF of SFC
k, if we assume vk,n̂ to be Layer 1 RAN VNF, according to
experimental results running on the general purpose processors
(GPPs), the processing time of Layer 1 functions vk,n̂ of SFC
k regarding with the allocated CPU frequency πn̂

k,t at time t
is given as in [28]

τpk,n̂,t =
θ1Nk

(πn̂
k,t)

2

2∑
j=0

aj(iMCS,k)j ,

vk,n̂ = RAN Layer 1, t ∈ Tk, k ∈ K

(8)

where Nk denotes the number of aggregated resource blocks
(RBs) allocated to the users of SFC k. aj is the Layer 1 compu-
tational resource model-specific coefficient, which is related to
the type of RAN functionality, e.g., modulation/demodulation,

encoding/decoding, and the corresponding values are given in
[28]. iMCS,k is the indices of the MCSs of SFC k as defined
in 3GPP TS 38.214 [29]. For the sake of simplicity, we assume
that all users within SFC k are assigned with the same MCS
indices. θ1 is the scaling factor of the Layer 1 [30]. Equation
(8) provides a closed-form approximation for processing time
in RAN function, which can be used to determine the required
number of CPUs and their working frequency for provisioning
each VNF.
• Other VNFs
For the other common network function types, such as core

network, gateway, load balance, etc, the computation resource
model is different from the RAN functions, which is user data
rate related. Considering each computation task of an SFC k
can be processed in the edge servers, we can use a two-field
notation Ak,n̂ = {λk,t, ρk,n̂} to denote the computation task
of the VNF n̂ of SFC k, where λk,t is the input data-size (in
bits) per second at time slot t, which also represents the data
rate of this SFC and ρk,n̂ denotes the number of CPU cycles
that are required to compute one-bit data by this VNF vk,n̂.
Note that, the value of ρk,n̂ varies from the type of VNF vk,n̂.
Similar to [31], the processing latency of the other VNFs vk,i
in the SFC k is given as:

τpk,n̂,t = θ2
ρk,n̂λk,t
πn̂
k,t

,

∀vk,n̂ ∈Vk/{RAN Layer 1}, t ∈ Tk, k ∈ K
(9)

where λk,t is the aggregated users’ data rate under this SFC,
θ2 is the scaling factor of the functions on the other layers
[30] with regard to RNA Layer 1. Thus, The total processing
latency for VNFs of SFC k is:

lpk,t =
∑

vk,n̂∈Vk

τpk,n̂,t (10)

(2)Communication Latency of Virtual Links: The communi-
cation latency of each SFC consists of the propagation latency,
transmission latency. Based on the study in literature [21], the
communication latency of SFC k on virtual link lk,(n̂,m̂) ∈ Lk

can be formulated as:

τ ck,(n̂,m̂),t = dpropk,(n̂,m̂),t + dtransk,(n̂,m̂),t (11)

Hereby, the first term of equation (11) indicates the propaga-
tion latency on physical links that virtual link lk,(n̂,m̂) traverses
by, which is related with the distance between the adjacent
physical edges. The second term indicates the transmission
latency, which is calculated by dividing the size of transmitted
packet with the bandwidth capacity allocated to the virtual
links:

dtransk,(n̂,m̂),t =
bk

η
(n̂,m̂)
k,t

, k ∈ K, lk,(n̂,m̂) ∈ Lk, t ∈ Tk (12)

Then the communication latency of SFC k is formulated as:

lck,t =
∑

lk,(n̂,m̂)∈Vk

τ ck,(n̂,m̂),t (13)

7

Finally, considering the deterministic E2E latency require-
ment Lk of SFC k, the E2E latency constraint is given as:

Lk(1− ε) ≤ lpk,t + lck,t = lk,t ≤ Lk(1 + ε) (14)

where ε represents the latency variation (i.e., jitter) that net-
work services can tolerate, ε ∈ (0, 1).

Profit Model:
1) Cost Model: The cost of SFC k can be defined similar

to the one in [32] as follows:

Ck =
∑
t∈Tk

(∑
lk,n̂∈Vk

(α1π
n̂
k,t + α2π̄

n̂
k)+

∑
lk,(n̂,m̂)∈Lk

βη
(n̂,m̂)
k,t

)
, k ∈ K

(15)

where α1, α2 denotes the cost factor of allocating one resource
unit of CPU and memory, β represents the cost factor of
allocating one bandwidth unit.

2) Revenue Model: We define the revenue of each SFC
k ∈ K within its lifetime as follows:

Rk =
∑
t∈Tk

(δλk,t + ω/Lk), k ∈ K (16)

As the E2E latency requirement Lk can be seen as the most
important QoS indicator for the safety-critical service and the
performance assurance that it can provide to users, so we take
into account the Lk as the part of revenue that SFC k can
make. Besides E2E latency, data rate λk,t should also been
considered as another QoS indicator by which ISP can charge
users. It will consume more network resources (i.e., processing
and bandwidth resources) to provision a service with higher
data rate than lower data rates while ensuring the same E2E
latency requirement Lk.

Thus, for each SFC k, the overall profit of SFC k is
formulated as:

Pk = Rk − Ck (17)

3) The total profits of the system: The total profits of the
system, denoted by P , is formulated by the summation of
profits of all the SFCs deployed as follows:

P =
∑
k∈K

Pk (18)

Thus, the deterministic SFC lifetime management problem
in this paper is formulated as an optimization problem which
maximizes the overall profits of system:

maxP (19)
s.t.(1− 18) (20)

The formulated problem is NP-hard as a result of the non-
reasonable calculation time. To prove the NP-hardness of this
problem, we need to to reduce it to a well-known NP-hard
problem. We simplified our problem and considered only one
SFC which contains a series of VNFs. The problem can be
denoted by P where the grouping of multiple VNFs and
placing these VNFs into edge nodes is similar to the knapsack
problem, which is known to be NP-hard. In this problem, the

edge nodes can be considered as knapsacks while the VNFs are
considered as different objects. We try to reduce the resource
cost while the total CPU and memory capacity of VNFs
within an edge node do not exceed the node capacity, which
is equivalent to the cost in the knapsack problem. Besides,
we also consider the latency requirement which will increase
complexity. Thus, deterministic SFC lifetime management is
an NP-hard problem. In addition, in this paper, we consider the
CPU resource sharing can not ensure the processing latency,
the CPU resource allocation should be discrete, thus it is hard
to find an integer solution to make the E2E service latency
equal to the latency requirement exactly. We propose a heuris-
tic solution to solve this problem in acceptable timescales.

V. DETERMINISTIC SFC LIFETIME MANAGEMENT

In general, we can maximize the overall profits for ISP
from two aspects: 1) accepting more SFC requests to increase
the revenue; 2) reduce the resource cost caused by optimally
allocating network resources to SFC requests. In addition, we
need to ensure the latency experienced by SFC requests to be
deterministic.

We divide the procedures on SFC lifetime management into
two phases: SFC deployment and SFC adjustment, which are
solved by the Det-SFC deployment (Det-SFCD) algorithm and
the Det-SFC adjustment (Det-SFCA) algorithm, respectively.
In SFC deployment phase, 1) optimal paths need to be se-
lected to avoid the resource bottleneck when deploying SFCs,
ultimately increase the SFC acceptance rate; 2) VNF instances
need to be created optimally to minimize the resource costs
while ensuring the latency requirements. In SFC adjustment
phase, optimal VNF instance scaling up/down scheme should
be designed in order that the latency variation is controlled
within a small range.

A. Deterministic SFC Deployment (Det-SFCD) algorithm

1) Path Calculation based on Deployment Cost: To derive
optimal paths for deploying SFCs in the network, we define
”deployment cost” for physical links and nodes which will
indicate overloaded edge/node, so that we balance the network
load and ultimately reduce resource bottlenecks. We use ccpuk,n ,
cmem
k,n and cbwk,n,m to represent the deployment costs of CPU

and memory on node n and bandwidth on link (n,m) when
deploying SFC k as follows.

ccpuk,n = φn ·
max
n∈N

Ccpu
n

Ccpu
n rcpuk,n

(21)

cmem
k,n = φn ·

max
n∈N

Ccpu
n

Cmem
n rmem

k,n

(22)

cbwk,(n,m) = φ(n,m) ·
max

(n,m)∈E
B(n,m)

Bn,mrbwk,(n,m)

(23)

where rcpuk,n , rmem
k,n and rbwk,(n,m) ∈ [0, 1] denote the residual

CPU ratio (i.e., the amount of residual CPU cores divided
by the the total amount of CPU cores) on node n, residual
memory ratio on node n and remaining bandwidth ratio on

8

link (n,m). In Eqs. (21)-(23), when the network load is low,
the values of ccpuk,n , cmem

k,n and cbwk,(n,m) are relatively small
and increase slowly. Whereas if the resource consumption
are comparative to resource capabilities, the values will be
very large and increase quickly. Besides network load, we
also take into account the node or link capacity itself. With
max
n∈N

Ccpu
n /Ccpu

n , the nodes with higher capacities and lower

network load are more likely to be selected. Thus, ccpuk,n , cmem
k,n

and cbwk,n,m can be used to facilitate the path selection. In
addition, we use the coefficients φn and φ(n,m) to set the
criticalities of different nodes and links, since some nodes
and links are located in critical places, which may have much
background traffic. Furthermore, we define the load status of a
path by summing up the deployment costs along the path. The
deployment cost of the path l when deploying SFC request k
is defined as:

Rk,l =
∑
n∈Nl

max{ccpuk,n , c
mem
k,n }+

∑
(n,m)∈El

cbwk,n,m (24)

where Nl and El denote the nodes and links along the selected
path l. According to Eq.(24), we can infer that there are no
bottleneck at edge nodes, nor at links along the selected path
if the cost Rk,l is small when deploying SFC k. Conversely,
if the cost Rk,l of the selected path is very large, there must
exist some bottleneck at the edge nodes or at some links which
are overloaded along the path l. We therefore need to choose
other paths with smaller cost to deploy SFC k. We then sort
the candidate paths in the ascending order according to Rk,l.

A

B D

C

E

F

G

H

𝑷𝟏

𝑷𝟐

6

2.5
5

3

1.3

1.7 1.2

6.5

1.8

1

1.2 2.6

2.5

1.22.6

1.2

1.6

Path 𝑳𝒄 𝑹
𝑷𝟏
𝑷𝟐

𝟒 𝒎𝒔
𝟑 𝒎𝒔

𝟏𝟑. 𝟗
𝟏𝟐. 𝟐

𝑷𝟑 𝟒 𝒎𝒔 𝟔. 𝟖

𝑷𝟑

Fig. 3: Weighted topology with deployment costs.

Leveraging the traditional shortest path algorithm, we ex-
tend it to obtain the shortest paths using as weight the
deployment cost Rk,l from the source node s to the destination
node d on the graph G. As shown in Algorithm 1, we first set
the weight of this topology as link length (distance between
two adjacent edge nodes) and use KSP algorithm [33] to get
Γ shortest paths. Then we update the deployment cost of each
physical node and link. For deployment cost of physical nodes,
we set the value of deployment with max{ccpuk,n , c

mem
k,n }. As

we aim at finding the bottleneck nodes, we consider a node
being a bottleneck node when its CPU load ccpuk,n and memory
load cmem

k,n are high. We set deployment cost of physical links
with cbwk,(n,m). After updating the deployment cost of the whole
topology, we calculate the Rk,l for each candidate path. As
shown in Fig.3, even if the latency path 2 is lowest (three
hops) among all the candidate paths between node A and H ,
the deployment cost of path 2 is higher compared with the
cost of path 3, which means path 2 is overloaded on some link

Algorithm 1: Path calculation with Extended Dijk-
stra’s Algorithm.
Input: G = (V, E), sk, dk
Output: Γ candidate paths with Rk,l

1 Perform KSP algorithm to get Γ shortest paths
between sk and dk

2 Update the deployment cost of physical nodes with
max{ccpuk,n , c

mem
k,n }

3 Update the deployment cost of physical links with
cbwk,n,m

4 for l ∈ [1,Γ] do
5 Calculate the deployment cost Rk,l of path l

6 Sort the paths in ascending order according to Rk,l

(e.g., link(C,G)). Therefore, when deploying an SFC request
between nodes A and H , path 3 should be selected even it is
not the shortest path, which is the best path for SFC k with
least deployment cost. In this case, the deployment cost has the
higher priority to be considered than path latency. The benefits
of deploying the SFC into the path with least deployment costs
are twofold: 1) it can exclude the paths with bottleneck nodes
or links to increase the acceptance ratio; 2) it can avoid making
nodes or links to be the bottlenecks in the networks.

2) SFC Deployment Scheme with Minimal Resource Cost:
Next, we need to decide each VNF instance’s size for SFC k,
i.e., the processing resource allocation to each VNF instance,
based on the chosen path. As generally known, each VNF has
its specified resource demand according to the user load and
VNF type. The latency of a VNF instance is decided by the
amount of resource demand and the resources allocated to it.
It is obvious that allocating processing resources to different
VNF instances can lead to different processing latency, which
will in turn result in different resource costs. Thus, given a SFC
request k, creating VNF instances with minimal processing
resources while ensuring a certain E2E service latency remains
a question to be solved. After a suitable path is selected for
SFC k, the propagation and transmission latency are known,
which can be calculated according to this route. Note that,
to focus on the processing allocation, we set the bandwidth
allocation in line with the data rate of SFC k. Given a total E2E
service latency requirement, in other words, latency budget,
we need to determine the latency distribution on each VNF
instance of SFC k. Fig.4 gives an example. We assume the total
latency budget of SFC k is 15 ms, the communication latency
on the selected path 3 is 4 ms, thus the remaining latency
budget for VNF1/VNF2/VNF3 are 11 ms. For VNF 1 (e.g.,
Layer 1 RAN VNF), the required processing resources are
relatively larger than that of VNF 2&3 (e.g., Layer 2&3 RAN
VNF). As we can see, the resulted latency of allocating 1 CPU
core to VNF instance 1/2/3 are 8.5/4.5/2.5 ms, respectively. To
derive the CPU core allocation combination of VNF instances
within SFC k, we will calculate lpk for all the combinations
of CPU core allocation options as shown in CPU-latency-cost
table of Fig.4. We then choose a combination of CPU core
allocation with minimal resource cost among the combinations
in which the resulted latency is also near to Lk. In this case,

9

the CPU core allocation (2 cores, 2 cores, 2 cores) for VNF
instance 1/2/3 results in the minimal resource cost 3.9 $ with
a VNF processing latency lpk = 10.1 ms < 11 ms. It shall
be noted that the CPU resource allocation is discrete in terms
of the amount of CPU cores; thus it can not usually derive a
latency value exactly equal to latency requirement.

𝑉𝑁𝐹ଵ 𝑉𝑁𝐹ଶ 𝑉𝑁𝐹ଷ

1 core
2 cores
4 cores
8 cores

VNF instance 1
CPU Latency Cost

6.1 ms
4.5 ms
2.6 ms

8.5 ms 1 $
1.3 $
2.4 $
6 $

1 core
2 cores
4 cores
8 cores

VNF instance 2
CPU Latency Cost

2.6 ms
1.5 ms
0.8 ms

4.5 ms 1 $
1.3 $
2.4 $
6 $

1 core
2 cores
4 cores
8 cores

VNF instance 3
CPU Latency Cost

1.4 ms
0.8 ms
0.4 ms

2.5 ms 1 $
1.3 $
2.4 $
6 $

6.1+2.6+1.4=10.1

1.3+1.3+1.3=3.9 $

𝐿ாଶா ൌ 𝐿 𝐿 15 𝑚𝑠

𝑳𝒑

𝑪𝒐𝒔𝒕

Fig. 4: CPU core allocation to VNF instances

The pseudocode of the Det-SFCD algorithm is shown in
Algorithm 2 which is designed to solve the joint SFC place-
ment and resource allocation problem. For a newly arrived
SFC request k, we first calculate the deployment cost of CPU,
memory and bandwidth according to the network load status
and update the topology with the deployment costs in Line
1-5. With Algorithm.1, we then obtain Γ available paths with
deployment costs in Line 6. Based on the path pk, optimal
VNF processing resource allocation scheme will be applied
into SFC k in Line 8. In Line 9, the system will check if
the selected path can meet the resource requirements in terms
of CPU, memory and bandwidth demand. If the path pk has
enough resources for SFC k, we next need to determine the
physical nodes to instantiate the VNFs on along the path.
Given the allocated CPU core and memory of each VNF, we
try to map the VNF instances into physical nodes in a load-
balancing way. Specifically, we place the VNF instance with
higher CPU demand in the node with more CPU resources,
while keeping the VNF order along the SFC. After embedding
the SFC k successfully, we update the network status.

B. Deterministic SFC Adjustment (Det-SFCA) algorithm

In this section, we try to solve the SFC adjustment problem
caused by the traffic variation during the SFC lifetime. To this
end, we propose a deterministic SFC adjustment algorithm
with the objective of minimizing the latency variation. First,
we need to adjust the resource allocation (i.e., CPU core
allocation) to follow the traffic load variation of SFCs, so that
the E2E latency requirements are met. Second, we consider
the historical network load when adjusting the SFCs, to avoid
network congestion and reduce adjusting failure ultimately.

As the traffic load of SFCs change over time, the resource
demand also change according to the traffic load which, in
turn, affects the E2E service latency. If the changed service
latency cannot satisfy the constraint (14), the corresponding
resource adjustment should be performed to control the latency
variation, i.e., scaling up/down VNF instances. To achieve

Algorithm 2: Det-SFCD

Input: SFC set k, weighted topology G̃
Output: SFC deployment scheme

1 for each n ∈ N , (n,m) ∈ E do
2 ccpuk,n ← The deployment cost on CPU of n at

current network status
3 cmem

k,n ← The deployment cost on memory of n at
current network status

4 cbwk,n,m ← The deployment cost on bandwidth of
(n,m) at current network status

5 Update the topology G̃ with ccpuk,n , cmem
k,n and cbwk,n,m

6 Pk ← Γ candidate paths
7 for pk in Pk do
8 Q(Vk)← Optimal resource allocation scheme

along the selected path pk
9 Bool← Check whether pk satisfies SFC k in

terms of CPU, memory and bandwidth allocation
10 if Bool == true then
11 Embed the VNF instances (along with virtual

links) into the nodes in a load-balancing way
12 Update the network status
13 Return True

14 Return False

VNF instance scaling up/down optimally, we need to solve
two problems: 1) which VNF instance(s) should be scaled
up/down?, and 2) how much processing resources should be
provisioned to this VNF instance(s)? For the first problem,
we need to take into account the current residual resources of
edge nodes and historical network load status to decide VNF
instance(s) to be scaled up/down. Basically, when network
load is relatively high, we need to design the scaling scheme
carefully to avoid network congestion. The network load
indicator is defined to describe the variation of network load.
We use ψn(t) to denote the past network load of physical node
n from time t.

ψn(t) =
∑
k∈Dn

(λk,t − λk,t−T) (25)

where (λk,t−λk,t−T) represents the traffic variation of SFC k
during (t−T, t]. Dn denotes the set of SFCs that are embedded
in physical node n. Since the network throughput could not
change rapidly in a short time interval, ψn(t) can indicate the
trend of the network load in the next time units. If the value
of ψn(t) is positive, the network load in physical node n is
supposed to increase in the future. While the value of ψn(t)
being around 0 means that the network load in physical node n
keeps stable and decreasing network load leads to ψn(t) < 0.
When the service latency of SFC k increases beyond the
latency requirement, that is, lk,t > Lk(1 + ε), we should
scale up this SFC k according to the network load indicator
ψn(t), n ∈ Dk. We choose the VNF instance(s) located in a
physical node with lower ψn(t) to scale up. For example, as
shown in Fig.(5), the three SFCs are featured with different
traffic profiles and are all partly deployed on node n. Taking

10

SFC 1 as an example, the VNFs of this SFC are deployed on
node m,n, o. If it needs to be scaled up at time t, we will first
calculate the ψm, ψn, ψo for each node, we then find that ψn

at time t is the minimum among the three nodes, which means
the network load will decrease in the following time slots in
node n. Thus we should scale up VNF 1.2 to fit the latency
requirement of SFC 1 in a load-balancing way. With network
load indicator ψn(t), we can avoid overloading some nodes
and reduce the network bottleneck by using complementary
traffic profiles between different SFCs.

VNF 1.2

VNF 2

VNF 3

SFC 1

SFC 2

SFC 3

tt-T

𝝀𝟏,𝒕

tt-T

𝝀𝟐,𝒕

tt-T

𝜆ଷ,௧

tt-T

𝜓

Node n

tt-T

𝜓

tt-T

𝜓

VNF 1.1 VNF 1.3

Node oNode m
𝑙ଵ,௧ 𝐿ଵሺ1 𝜖ሻ

Fig. 5: SFC adjustment.

As shown in Algorithm 3 (scaling up case), the actual
service latency lk(t) of SFC k and ψn(t) are updated based
on the network status at time t at Line 1. If the service latency
of SFC k exceeds service latency Lk(1 + ε) (i.e., traffic load
of SFC k increases, (λk,t > λk,t−1)), we need to determine
which VNF instance(s) to scale up. Let Dk denote the physical
nodes in which SFC k is embedded. Since VNF instance
scaling up/down will consume extra time and resources [34],
scaling as fewer VNF instances as possible is beneficial for
service continuity. Det-SFCA will first sort the nodes in Dk

with ascending order in terms of max{ccpuk,n , c
mem
k,n }. We set a

threshold ξ to control the scaling of VNFs. We scale up the
VNFs in the descending order of residual resources of nodes
in Dk, that is, we try to scale up the VNFs in the node with
more residual capacity.

To derive the new CPU core allocation scheme for the VNF
instance(s) in node n ∈ Dk with minimal ψn(t), the CPU-
latency table for SFC k is updated according to the traffic
load at time t. Based on the CPU-latency value, new CPU core
allocation should be applied to satisfy the latency constraints:
Lk(1 − ε) < lk(t) 6 Lk(1 + ε). We assume that there is a
maximum of CPU cores for VNF instance, if it fails to make
lk(t) within the latency range above, iterate this procedure
until the latency constraint is met in Line 6-14. If there is
not node n whose max{ccpuk,n , c

mem
k,n } ≤ ξ, we need re-sort the

nodes in Dk in terms ψn(t) and scale up VNFs of SFC k
until the latency constrains is satisfied. For the scaling down
case, the principle is to scale down the VNFs in the nodes
whose residual capacity is relatively small or network load is
increasing.

Algorithm 3: Det-SFCA (scaling-up case)

Input: SFC k at time t, weighted topology G̃
Output: SFC adjustment

1 For SFC k at t,
2 Update lk(t), max{ccpuk,n , c

mem
k,n } and ψn(t)

3 if lk(t) > Lk(1 + ε) then
4 Update the path latency and re-calculate the

latency-CPU table for SFC k
5 Sort the nodes in Dk with ascending order in terms

of max{ccpuk,n , c
mem
k,n }

6 for n ∈ Dk do
7 if max{ccpuk,n , c

mem
k,n } ≤ ξ then

8 Increase CPU core allocation for VNFs
iteratively and calculate new E2E latency
according to new CPU core scheme

9 if Lk(1− ε) < lk(t) 6 Lk(1 + ε) then
10 Scale up this VNF instance(s) with new

CPU core allocation option
11 Update the network status
12 return True
13 else
14 Scale up VNF instance(s) with highest

CPU cores

15 else
16 Break

17 Re-sort the nodes in Dk with ascending order in
terms of ψn(t)

18 for n ∈ Dk do
19 Increase CPU core allocation for VNFs

iteratively and calculate new E2E latency
according to new CPU core scheme

20 if Lk(1− ε) < lk(t) 6 Lk(1 + ε) then
21 Scale up this VNF instance(s) with new

CPU core allocation option
22 Update the network status
23 return True
24 else
25 Scale up VNF instance(s) with highest

CPU cores

26 return False

C. Deterministic SFC Lifetime Management (Det-SFCLM)

Finally, we will introduce the deterministic SFC lifetime
management solution, as shown in Algorithm 4. We set the
total time period as T . At time t, the system will detect
the events that happen in the networks. We divide the events
into three types: arrival events, departure events and traffic
load variation events. The SFCs which are associated with
these events will be put into Ki,t, Ko,t and Kv,t, respectively.
For arrival events, we sort the incoming SFC requests with
descending order in terms of latency requirements to let the
SFC request with stricter latency requirement be deployed first
in Line 5. We then use the Det-SFCD algorithm to perform the

11

Algorithm 4: Det-SFCLM

Input: SFC set K, weighted topology G̃
Output: Resource allocation during SFC lifetime

1 for t ∈ T do
2 Update weight (deployment cost) of topology G̃
3 Collect events at time t
4 Divide the events into three classes: arrival events

Ki,t, departure events Ko,t, traffic load variation
events Kv,t.

5 Ki,t ← Sort SFCs with arrival events in terms of
latency requirements in descending order

6 for k ∈ Ki,t do
7 Perform SFC deployment with Det-SFCD

algorithm for SFC k

8 Ko,t ← Sort SFCs with traffic load variation events
in terms of latency requirements in descending
order

9 for k ∈ Kv,t do
10 Perform SFC deployment with Det-SFCA

algorithm for SFC k

11 Ko,t ← Sort SFCs with departure events
12 for k ∈ Ko,t do
13 Release corresponding resource for SFC k

TABLE II: Notations used in the proposed algorithms.

Notation Description
rcpuk,n , rmem

k,n , rbw
k,(n,m)

CPU, memory and bandwidth remaining rate
of node n and link (n,m)

ccpuk,n , cmem
k,n , cbw

k,(n,m)
Deployment cost of CPU and memory on node
n, bandwidth on link (n,m)

Rk,l The overall deployment cost of embedding
SFC k in path l

Dn The set of SFC requests embedded in node n
Dk The set of nodes that the VNFs of SFC k are

deployed on
lk(t) The actual experienced latency of SFC k at t
ψn(t) Historical network load of node n
Pk Current path of SFC k
T Traffic sample period

SFC deployment in Line 7. For traffic variation events, we also
deal with the SFC requests with stricter latency requirements
first using the Det-SFCA algorithm in Line 9-10. For departure
events, we just need to release the corresponding network
resources in Line 12-13.

D. Complexity Analysis

In Det-SFCD, the complexity of calculating the costs of
nodes and links is no more than O(|V| + |E|). Executing
the shortest path algorithm in physical topology G = (V, E)
involves of a complexity in the order of O(|E|+ |V |log|V |).
Given that Γ candidate paths and Ik VNFs in a SFC, the
total complexity of Det-SFCD is in the order of O(ΓIk(|E|+
|V |log|V |)).

In Det-SFCA, for a SFC k that needs to be scaled up/down
based on the latency violation, and assuming that the path
length is |Pk| and the SFCs that are embedded on each

0 200 400 600 800 1000
Time (unit)

0

2

4

6

8

10

SF
C

Re
qu

es
t A

rri
va

ls
(p

er
 1

0
tim

e
un

its
)

Fig. 6: SFC request arrival rate over time.

Fig. 7: Network Topology.

node along this path are sn, n ∈ Pk, the time complexity of
calculating the network load indicator is O(|Pk|sn), n ∈ Pk.
As Det-SFCA needs to scale this SFC until its service latency
meets the latency constraints, the maximum time complexity
for VNF instance scaling is O(|Pk|(Ik + sn)).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

For the performance evaluation, We consider a refer-
ence metro-regional network with 52 nodes, comprised of 2
Metro Core Backbone Nodes (MCBNs), 6 Metro Core Nodes
(MCNs), and 44 Metro Aggregation Nodes (MANs) and 72
bidirectional links as shown in Fig.7. In the topology, we
select the 44 MANs as edge nodes and the other nodes act
as switching nodes. Each edge node is associated with three
cell sites (not shown in the figure for the sake of clarity). The
memory capacity and CPU capacity of each edge node are
set differently according to different node types, as shown in
Table III. The maximum number of CPU cores permitted to
be allocated per VNF instance is set to eight. The bandwidth
capacity per link is 100 Gbps (e.g., 10 * optical wavelengths

12

0.6 0.7 0.8 0.9 1
Processing capacity scaling factor a

40

50

60

70

80

90

SF
C

Ac
ce

pt
an

ce
 R

at
e(

%
)

Det-SFCLD
KSP-LE

(a)

10 ms 15 ms 20 ms
Latency Requirement

60

65

70

75

80

85

90

95

SF
C

Ac
ce

pt
an

ce
 R

at
e(

%
)

Det-SFCLD
KSP-LE

(b)

0 200 400 600 800 1000
Time (unit)

0

2

4

6

8

10

12

14

La
te

nc
y

vi
ol

at
io

n
(%

)

Det-SFCLA
KSP-LE

(c)

Fig. 8: (a) The comparison of SFC request acceptance rate vs. scaling factor a; (b) The comparison of SFC request acceptance
rate vs. latency requirement; (c) Latency violation over time.

at 10Gbps). The radio configuration of CSs are in line with
the RAN VNF parameters specified in [30].

In the simulation, the source nodes of SFC requests are
selected randomly from the edge nodes (44 MANs), while the
destination nodes of SFC requests are randomly set from the
switching nodes (eight MCNs&MCBNs). In order to capture
the dynamic load, the arrival rate of SFC requests follows
the distribution [21] as shown in Fig.6. The lifetime of SFC
requests obeys an exponential distribution with an average of
100 time units. We assume that all SFCs are running with 4
VNFs (i.e., Layer 1 RAN VNF, Layer 2&3 RAN VNFs, 5G
core VNF, and common VNF) [35]. For each SFC request, the
resource block Nk, mean data rate λk,t(Mbps), memory (MB)
are set as randomly distributed between [50, 100], [10, 100]
and [100,500], respectively [30]. The E2E latency requirement
for each SFC request is set as 10 ms, 15 ms and 20 ms [36].

We set the simulation period as 1000 time units and repeat
the simulations in 20 epochs to eliminate contingency, in each
epoch a set of SFCs arrive and leave the environment. After an
existing SFC leaves, the corresponding network resources are
released and the network status is accordingly updated. The
coefficients φn, φn,m are set randomly between [1,2] among
the nodes and links.

B. Algorithm to use for comparison

Since there is no existing work studying the SFC configura-
tion with deterministic latency and jitter, here-under we briefly
introduce a straightforward SFC configuration algorithm that
we use as a comparison term against our proposed algorithms.
• K Shortest Path-Latency Equalization (KSP-LE): This

algorithm uses ksp algorithm without considering deploy-
ment to obtain k available shortest paths for the SFC
deployment. For the CPU core allocation, it distributes
the processing latency budget on VNF instances equally,
which does not consider the resource cost on processing
latency. In the adjustment phase, it scales up/down the
VNF instances with the internal order until the E2E
service latency is met.

C. Result analysis

In Fig.8(a), the mean acceptance rate of SFC requests
achieved in each algorithm is plotted and that is for different

TABLE III: Simulation Parameter Settings.

Description Value

System Parameters
Network Topology TIM Metro-Regional

network
Number of edge nodes 44
Number of physical links 72
CPU capacity of MAN/MCN/MCBN 32/64/128 ×102cores
Memory capacity of MAN/MCN/MCBN 16/32/64 ×102GB
Bandwidth capacity of links 100 Gbps
Maximum CPU core for VNF instance 8
CPU frequency 2 GHz

RAN VNF Computational Model
Upper layer scaling factor, θ2 2
Layer 1 scaling factor, θ1 1
Model [28]-specific constant, a0 32.583
Model [28]-specific constant, a1 1.072
Model [28]-specific constant, a2 0.03
Average MCS index, iMSC,k 16

SFC Parameters
SFC arrival rate Fig.6
Lifetime of each SFC X ∼ E(1

100
)

Packet size 64 Bytes
Number of VNFs per SFC request 4
Resource block Nk [50, 100]
Memory demand of VNF instance [100, 500]MB
Mean user rate, λk,t [10, 100] Mbps
Maximum tolerated latency, Lk {10, 15, 20}ms
ρ2 for Layer 2&3 functions 0.2
ρ3 for 5G core functions 0.2
ρ4 for common functions 0.1

Simulation Parameters
Execution period of Det-SFCLM 1000 time units
Jitter threshold ε 10 %
T 5 time units

processing capacity scaling factor. The acceptance rate of Det-
SFCD is higher. Since the Det-SFCD algorithm considers
the deployment cost when selecting suitable paths for SFC
requests, this reduces the resource bottleneck and enhances the
SFC request acceptance rate. Compared to our proposed algo-
rithm, KSP-LE pays no attention to the remaining resources
in the network. It simply chooses the shortest paths. This
increases the probability of embedding failures. In Fig.8(a),
we also investigate on how the network capacity affects the
SFC acceptance rate by setting the scaling factor a of CPU
resources. From the figure, we observe that as the scaling
factor a increases from 0.6 to 0.9, the SFC acceptance rate

13

increases from the range about 58-64% to the range about 96-
100%. This is because if the edge nodes are equipped with
more resource, SFC requests are more likely to be served in
a load balancing way. Moreover, when the scaling factor a
exceeds 0.9, the impact of network capacity on the acceptance
rate is not obvious. We also present the influence of latency
requirement Lk of SFC on the acceptance rate of algorithms.
As shown in Fig.8(B), in case of the Det-SFCD algorithm,
as the latency requirement becomes less strict, the acceptance
rate increases from a range of 77-83% to 83-93%. This is
attributable to the fact that lower latency requirements lead to
higher CPU resource requirement, which decreases, in turn,
the overall acceptance rate.

0 200 400 600 800 1000
Time (unit)

0

20

40

60

80

Av
er

ag
e

CP
U

ut
iliz

at
io

n
(%

)

Det-SFCLA
KSP-LE

Fig. 9: Average CPU utilization over time.

We evaluate the performance of Det-SFCA in terms of
the latency violation over time. As shown in Fig.8(c), the
service latency violation of SFCs happens earlier with KSP-
LE than with Det-SFCA. The latency violation is low since
the available resources are adequate in the beginning of the
simulation and the acceptance ratio is high. After t = 400, the
latency violation decreases and that is due to the reduction of
SFC arrivals. Based on this, we also show the average CPU
utilization over time in Fig.9. As discussed above, the average
CPU utilization increases rapidly along with the deployment
of new SFCs, due to the adequate node and link capacities.
After t = 300, the CPU utilization increases slowly and even
decreases. On the one hand, the SFC arrivals at t = 300
decreases, and on the other hand, the node capacities are
almost occupied by the existing SFCs in the networks. New
SFCs will be simply rejected at this time. Compared to KSP-
LE, Det-SFCA can result in a higher utilization. Without con-
sidering deployment cost, KSP-LE exhibits a lower utilization
of CPU resources by rejecting more SFC requests due to
resource bottleneck. Indeed, during the adjustment phase, if the
resource adjustment is performed without taking into account
the history of network load dynamics. For example, if we try
to scale up all SFCs when traffic load within an edge node
increases, it is more likely that we fail in scale up some SFCs.
This may, in turn, result in lower CPU resource utilization.
Finally, Det-SFCA keeps about 85% mean CPU utilization rate
under heavy network load during the 800-1000 time units.

We evaluate the performance of Det-SFCLM and KSP-
LE in terms of the overall profits in Fig.10. Fig.10(a) shows
the evaluation of accumulated network revenues derived by
accepting SFC requests over time units. Since high data traffic
rates directly result in high bandwidth consumption and long
latency, affecting the CPU processing resource allocation, we
jointly consider the data rate and latency requirement of a
SFC (i.e., which can be seen as the indicators of service level
agreement – SLA – with ISP) to define the revenue beneath
accepting and deploying SFCs into the networks. According
to the SFC request arrival rate shown in Fig.6, the traffic
load decreases between 200-400 time units and increases
between 600-800 time units. The growth rates of accumulated
revenue vary in these two time periods. In addition, we add
another scaling factor b of bandwidth, and set 80% CPU
capacity of physical nodes (a=0.8,b=1) and 80% bandwidth
capacity of physical links (a=1,b=0.8), respectively, and that
is in order to investigate the impact of network capacity on
the revenue. As shown in the figure, when we scale down
the network capacity (i.e., bandwidth and CPU capacity),
the overall revenue decreases, and that is since less SFC
requests are accepted. Furthermore, compared to scaling down
the CPU capacity (a=0.8), decreasing the network bandwidth
capacity (b=0.8) leads to more network bottleneck when
deploying SFC requests. Once a suitable path is selected,
the communication channel for the traffic steering of SFC
requests is fixed, whereas, there are more candidate localities
for embedding VNF instances. If the bandwidth capacity of
one of the links along the path is not sufficient, the SFC will
lose the opportunity to be embedded. Thus, network bandwidth
capacity is the main reason that will cause network congestion
for SFC deployment.

In Fig.10(b), we evaluate the resource cost of embedding
SFC requests. Since the Det-SFCD algorithm considers the
optimal resource cost when allocating latency budgets on
the VNF instances of a SFC, it achieves a lower overall
resource cost compared with latency equalization scheme.
Next, we investigate the impact of latency requirement Lk on
the resource cost. We set the latency requirement Lk as 10 ms,
15 ms and 20 ms. The result shows the SFC requests with
stricter latency requirements consume more network resources
and the case with Lk = 10 ms obtains about 20% higher
resource cost than the case with Lk = 15 ms. Det-SFCLM
outperforms KSP-LE in terms of revenue and cost. As a result,
it gains higher overall profits. As shown in Fig.10(c), we set
the Lk = 20 ms and a = 1, b = 1, Det-SFCLM obtains about
35% higher accumulated overall profits that KSP-LE.

Finally, we evaluate the performance of Det-SFCLM in
terms of the mean latency and jitter and depict the results
in Fig.11. We set the latency threshold ε = 10%. We then
observe that the mean latency experienced by SFCs is close
to the latency requirement. Although the average latencies of
Det-SFCLM and KSP-LE are close, the jitter of Det-SFCLM
is less the one of KSP-LE, as the latency violation of KSP-LE
is much more compared with Det-SFCLM. Furthermore, the
jitter increases along with the data rate. On the other hand, the
probability of failing to scale up a SFC increases as the data
rate increases. Indeed, when the data rate is low, the required

14

0 200 400 600 800 1000
Time (unit)

0

1000

2000

3000

4000

5000

Re
ve

nu
e

(k
$)

Det-SFCLM a=1,b=1
Det-SFCLM a=0.8,b=1
Det-SFCLM a=1,b=0.8
KSP-LE a=1,b=1

(a)

0 200 400 600 800 1000
Time (unit)

0

500

1000

1500

2000

Co
st

 (k
$)

Det-SFCLM L_k=10 ms
Det-SFCLM L_k=15 ms
Det-SFCLM L_k=20 ms
KSP-LE L_k=20 ms

(b)

0 200 400 600 800 1000
Time (unit)

0

250

500

750

1000

1250

1500

1750

2000

Pr
of

it
(k

$)

Det-SFCLM
KSP-LE

(c)

Fig. 10: (a) The comparison of revenue over time; (b) The comparison of cost over time; (c) Comparison of overall profits
over time.

20 40 60 80 100 120 140 160 180 200
Data rate (Mbps)

10

20

30

40

50

La
te

nc
y

an
d

Jit
te

r (
m

s)

Det-SFCLM 10 ms
Det-SFCLM 20 ms
Det-SFCLM 50 ms
KSP-LE 50 ms

Fig. 11: The mean latency and jitter vs. data rate.

CPU resources are much lower. Thus, the system is more likely
to scale up SFCs demanding fewer processing resources during
the adjustment phase.

VII. CONCLUSION

In this paper, we studied the deterministic SFC lifetime
management problem in 5G edge fabric and that is with
the objective of maximizing the overall profits for ISPs and
ensuring the bounded E2E service latency and jitter. For
this purpose, the Det-SFCD and Det-SFCA algorithms were
proposed. Det-SFCD selects optimal paths and determines
processing resource allocation with minimal resource cost for
SFC deployment, while keeping the service latency within
the latency requirement. Det-SFCA adjusts the processing
resource allocation for VNF instances of SFC due the traffic
variation in order to ensure a lower jitter (latency variation).
These two algorithms jointly solve the deterministic SFC
lifetime management efficiently. The conducted performance
evaluation showed that the proposed algorithms achieved more
than 15% enhancement in SFC acceptance rate and an average
35 % more overall profits in comparison to the baseline
solution. In the future, we will study SFC migration and
investigate how to ensure the deterministic latency and jitter
requirements during the SFC migration. We also plan to design

a proactive resource management framework that efficiently
carries SFC deployment, migration, and adjustment as per
prior and accurate prediction of traffic and network load
dynamics.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
CHARITY project with grant agreement No. 101016509 and
the MonB5G Project under Grant No. 871780. It was also
supported in part by the Academy of Finland 6Genesis project
under Grant No. 318927 and IDEA-MILL with grant number
33593.

REFERENCES

[1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in industry,
vol. 101, pp. 1–12, 2018.

[2] S. Samii and H. Zinner, “Level 5 by layer 2: Time-sensitive networking
for autonomous vehicles,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 62–68, 2018.

[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[4] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic networking
architecture,” draft-ietf-detnet-architecture-03 (work in progress), 2017.

[5] E. Grossman, C. Gunther, P. Thubert, P. Wetterwald, J. Raymond,
J. Korhonen, Y. Kaneko, S. Das, Y. Zha, B. Varga et al., “Deterministic
networking use cases,” IETF draft, 2018.

[6] H. Hantouti, N. Benamar, and T. Taleb, “Service function chaining in
5g & beyond networks: Challenges and open research issues,” IEEE
Network, vol. 34, no. 4, pp. 320–327, 2020.

[7] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for
service function chaining,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 487–507, 2018.

[8] O. R. Alliance, “O-ran: towards an open and smart ran,” White Paper,
2018.

[9] H. Yu, T. Taleb, and J. Zhang, “Deterministic service function chaining
over beyond 5g edge fabric,” IEEE Globecom 2021.

[10] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, and C. Metz,
“Colap: A predictive framework for service function chain placement in
a multi-cloud environment,” in 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2017, pp.
1–9.

[11] R. Gouareb, V. Friderikos, and A.-H. Aghvami, “Virtual network func-
tions routing and placement for edge cloud latency minimization,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2346–
2357, 2018.

15

[12] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[13] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in nfv-enabled
enterprise datacenter networks,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 554–568, 2017.

[14] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 731–741.

[15] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal vnfs
placement in cdn slicing over multi-cloud environment,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 616–627, 2018.

[16] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
2016.

[17] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5g network infrastructure,” in
2015 IEEE International Conference on Communications (ICC). IEEE,
2015, pp. 3879–3884.

[18] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal network
function virtualization realizing end-to-end requests,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–6.

[19] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet). IEEE, 2015,
pp. 171–177.

[20] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-
Machuca, “Holu: Power-aware and delay-constrained vnf placement and
chaining,” IEEE Transactions on Network and Service Management,
2021.

[21] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 10, pp. 2179–2192, 2018.

[22] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[23] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 486–
494.

[24] I. Leyva-Pupo, C. Cervelló-Pastor, C. Anagnostopoulos, and D. P.
Pezaros, “Dynamic scheduling and optimal reconfiguration of upf place-
ment in 5g networks,” in Proceedings of the 23rd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2020, pp. 103–111.

[25] Y. Liu, X. Shang, and Y. Yang, “Joint sfc deployment and resource
management in heterogeneous edge for latency minimization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2131–2143, 2021.

[26] Q. Xu, J. Wang, and K. Wu, “Learning-based dynamic resource pro-
visioning for network slicing with ensured end-to-end performance
bound,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 1, pp. 28–41, 2018.

[27] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu,
“vslicer: Latency-aware virtual machine scheduling via differentiated-
frequency cpu slicing,” in Proceedings of the 21st international sympo-
sium on High-Performance Parallel and Distributed Computing, 2012,
pp. 3–14.

[28] S. Khatibi, K. Shah, and M. Roshdi, “Modelling of computational
resources for 5g ran,” in 2018 European Conference on Networks and
Communications (EuCNC). IEEE, 2018, pp. 1–5.

[29] G. T. RAN, “Ts 38.214, nr; physical layer procedures for data,” V15.3.0,
Sept. 2018.

[30] J. Janković, Ž. Ilić, A. Oračević, S. A. Kazmi, and R. Hussain, “Ef-
fects of differentiated 5g services on computational and radio resource
allocation performance,” IEEE Transactions on Network and Service
Management, 2021.

[31] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[32] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[33] B. Y. Chen, X.-W. Chen, H.-P. Chen, and W. H. Lam, “Efficient algo-
rithm for finding k shortest paths based on re-optimization technique,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 133, p. 101819, 2020.

[34] Z. Luo and C. Wu, “An online algorithm for vnf service chain scaling
in datacenters,” IEEE/ACM Transactions on Networking, vol. 28, no. 3,
pp. 1061–1073, 2020.

[35] H. Yu, F. Musumeci, J. Zhang, M. Tornatore, and Y. Ji, “Isolation-aware
5g ran slice mapping over wdm metro-aggregation networks,” Journal
of Lightwave Technology, vol. 38, no. 6, pp. 1125–1137, 2020.

[36] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video,
2002, pp. 23–29.

Hao Yu received the B.S. and Ph.D degree in com-
munication engineering from the Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 2015 and 2020. He was also a Joint-
Supervised Ph.D. Student with the Politecnico di
Milano, Milano, Italy. He is currently a Postdoctoral
Researcher with the Center of Wireless Communica-
tions, Oulu University, Oulu, Finland. His research
interests include network automation, time sensitive
networks, deterministic networks.

16

Tarik Taleb is currently a Professor at the Cen-
ter of Wireless Communications, The University of
Oulu, Finland. He is the founder and director of
the MOSA!C Lab (www.mosaic-lab.org). Between
Oct. 2014 and Dec. 2021, he has been a Profes-
sor at the School of Electrical Engineering, Aalto
University, Finland. Prior to that, he was working
as Senior Researcher and 3GPP Standards Expert
at NEC Europe Ltd, Heidelberg, Germany. He was
then leading the NEC Europe Labs Team working
on R&D projects on carrier cloud platforms. Before

joining NEC and till Mar. 2009, he worked as assistant professor at the
Graduate School of Information Sciences, Tohoku University, Japan, in a lab
fully funded by KDDI, the second largest mobile operator in Japan. From Oct.
2005 till Mar. 2006, he worked as research fellow at the Intelligent Cosmos
Research Institute, Sendai, Japan. He received his B. E degree in Information
Engineering with distinction, M.Sc. and Ph.D. degrees in Information Sciences
from Tohoku Univ., in 2001, 2003, and 2005, respectively.

Prof. Taleb’s research interests lie in the field of telco cloud, network soft-
warization & network slicing, AI-based software defined security, immersive
communications, mobile multimedia streaming, and next generation mobile
networking. Prof. Taleb has been also directly engaged in the development
and standardization of the Evolved Packet System as a member of 3GPP’s
System Architecture working group 2. Prof. Taleb served on the IEEE
Communications Society Standardization Program Development Board. As an
attempt to bridge the gap between academia and industry, Prof. Taleb founded
the “IEEE Workshop on Telecommunications Standards: from Research to
Standards”, a successful event that got awarded “best workshop award”
by IEEE Communication Society (ComSoC). Based on the success of this
workshop, Prof. Taleb has also founded and has been the steering committee
chair of the IEEE Conf. on Standards for Communications and Networking.

Prof. Taleb served as the general chair of the 2019 edition of the IEEE
Wireless Communications and Networking Conference (WCNC’19) held in
Marrakech, Morocco. He was the guest editor in chief of the IEEE JSAC
Series on Network Softwarization & Enablers. He is/was on the editorial board
of the IEEE Transactions on Wireless Communications, IEEE Wireless Com-
munications Magazine, IEEE Journal on Internet of Things, IEEE Transactions
on Vehicular Technology, IEEE Communications Surveys & Tutorials, and a
number of Wiley journals. Till Dec. 2016, he served as chair of the Wireless
Communications Technical Committee, the largest in IEEE ComSoC. He also
served as Vice Chair of the Satellite and Space Communications Technical
Committee of IEEE ComSoc (2006 - 2010).

Prof. Taleb is the recipient of the 2021 IEEE ComSoc Wireless Commu-
nications Technical Committee Recognition Award (Dec. 2021), the 2017
IEEE ComSoc Communications Software Technical Achievement Award
(Dec. 2017) for his outstanding contributions to network softwarization.
He is also the (co-) recipient of the 2017 IEEE Communications Society
Fred W. Ellersick Prize (May 2017), the 2009 IEEE ComSoc Asia-Pacific
Best Young Researcher award (Jun. 2009), the 2008 TELECOM System
Technology Award from the Telecommunications Advancement Foundation
(Mar. 2008), the 2007 Funai Foundation Science Promotion Award (Apr.
2007), the 2006 IEEE Computer Society Japan Chapter Young Author Award
(Dec. 2006), the Niwa Yasujirou Memorial Award (Feb. 2005), and the Young
Researcher’s Encouragement Award from the Japan chapter of the IEEE
Vehicular Technology Society (VTS) (Oct. 2003). Some of Prof. Taleb’s
research work have been also awarded best paper awards at prestigious IEEE-
flagged conferences.

Jiawei Zhang received the Ph.D. degree from
the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of
Posts and Telecommunications (BUPT), China. He
currently is an associate Professor with BUPT. Dr.
Zhang has authored and co-authored more than 30
OFC/ECOC papers and top journal papers in optical
communication and networks. His research interests
include the collaboration of optical networks with
IP, wireless and cloud/edge, currently with an em-
phasis on the advanced technologies for providing

deterministic connections for future network applications. He served on the
Technical Program Committees for the IEEE DRCN 2018-2020, IEEE ICNC
2017-2018, ACP2020, and for the Workshop on Cloud Computing Systems,
Networks and Applications at the IEEE GLOBECOM 2014-2016, ICC 2015-
2016, and INFOCOM 2017-2018 conferences. He also severed as a Guest
Editor of the special issue on Resilience in future 5G Photonic Networks of
Photonic Network Communications journal (Springer).

